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The object of this paper is to classify cubic functions f on C3? according to their
singularities. A level surface of such a function extends to a cubic surface § in pro-
jective 3-space. The intersections S, T,, of § and its Hessian quartic 7" with the
plane at infinity are the same for all levels. We assume throughout that S, is a non-
singular cubic curve.

In §3 we show how the equisingularity class of T, determines the number and
multiplicities of critical points of /. In §2 we investigate S, n T,,, and show that
the equisingularity class of the pair (S, 7,,) determines that of f. Next we study
the case when some point of T, has polar quadric a plane-pair; complete enumerations
are given in §5 for the case when T, contains a line, and in §6 for when it contains
an Eckardt point of S.

In the final section we give a detailed analysis of cases when f has just two critical
values, and show how to obtain a complete list of types of functions f.

0. INTRODUCTION
0.1. Notation
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Although special notations will be used in some sections of the paper, the following will

generally be used. We have a homogeneous cubic function F of four variables

3

F(xo, 21, %35 %3) = X gpXy %y,
i: j: k=0
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where 4, is symmetric in its three suffices; we may also consider F as depending on the single

vector & = (X,, X1, X3, X3). Set

10F 3
o F = g'a‘;c; = j’kz=0aijkxjxk,
1 &F
Ol = § amam, = 2, Yk
and denote the completely polarized form by FP:
3
Fr(x,y,z) = X XY 2
1,3, k=0
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The Hessian matrix 6(#) of F has the 0,; F as entries; we denote its determinant by H = H(F).
If P is a point in projective space with coordinate vector &, its polar quadric 2 is the locus of
points y with FP(x, y, y) = 0, and so has matrix («). This may be singular: the locus of its
singular points is called its vertex, and is the set of y with F?(«, y, 2) = 0 for all z. This gives
a symmetric condition on & and y.

To consider the affine case we normally take x, = 0 as the plane at infinity, and set

J(%, %g, %3) = F(1, %y, %y, %3),  Foo(%y, X3, #3) = F(0, %y, %5, &3).
Write § = {«:F(«) = 0}, T = {«:H(F)(%) = 0} for the cubic surface and its Hessian

quartic; S, and T, for their respective intersections with the plane ¥, = 0 at infinity.
We suppose throughout that S, is a nonsingular cubic curve.

0.2. Description of results

The first main conclusion (§3) is that the equisingularity class of T, (together with an assig-
nation of a finite-valued invariant at each of its singular points) determines the number and
multiplicities of critical points of f. In fact each critical point P of multiplicity exceeding one
is a binode (or unode) of the corresponding level surface f(&) = a. In the binode case, its
polar quadric is a plane-pair, and the line of intersection of the planes meets the plane at
infinity in a point L which we call V-related to P. Then L is a double point of T,; its type
determines those of the singular points V-related to it.

In §2 we make a similar investigation for F with two critical points Pand Q with F(P) = F(Q).
If the line PQ meets the plane at infinity in M, then M is a point of §,, n 75, of multiplicity
exceeding one. An examination of all such multiple intersections leads to the conclusion that
the equisingularity class of the pair (S, 7,,) determines that of the function F.

This conclusion does not lead to a classification, however, as T, is not independent of S
and we cannot characterize geometrically just which pairs occur. Thus we next (§4) survey
the case when there is a point L at infinity (necessarily singular on T;,) whose polar quadric
with respect to S is a plane-pair. We classify these into six types, of which the first two are
not very significant (L is a node or cusp on T). For the rest, complete enumerations are
given in §5, which studies the case when T, contains a line of points L. whose polar quadrics
have a common vertex P, and in §6, which deals with the case when § has an Eckardt point
at infinity. In each of these cases, we are able to make a reduction to a problem of enumerating
cubic functions on C? with certain additional data. The completeness of the treatment allows
us to answer subsidiary questions: the study of all cases when T, contains a line; the overlap
of the above two cases; cases when some polar quadric is a repeated plane, or when F has a
critical point of corank 2, or when there is more than one Eckardt point at infinity.

We return to more general questions in §7, which is mainly devoted to obtaining a complete
enumeration of functions f with just two critical values. There are 24 cases, in each of which fis
essentially unique. In a final section we show that every combination of singularities that can
arise occurs in the unfolding of one (at least) of these 24.

0.3. Relation to singularity theory
The motivation for writing this paper was to study the possible decompositions (in the sense
of Lyashko (1976)) of the simple-elliptic singularity E4. Since this singularity has normal form
4y + 224+ 3yz (A3 # —1)
41-2
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and its versal unfolding involves adding terms of lower degree, all these unfoldings are affine
cubic functions satisfying our nonsingularity condition. Thus the final result above determines
the possible decompositions of Ee.

There s particular interest in determining explicitly (in low codimensions) the canonical
stratification of functions defined by Looijenga (1974) since one can use this to generalize to
arbitrary dimensions results found by inspection for elementary catastrophes. If M™ is a
compact manifold, and f: M — R has only simple singularities, then the stratum of f has co-
dimension X up— v, where the yp are the Milnor numbers of critical points P of f and v is
the number of critical levels. For EG, though # = 8, as we have a one-parameter family we
expect codimension 6.

Consider the versal unfolding of 4, which has seven-dimensional parameter space:

S By, 0,6 8 A) (5,9, 2) = x*+y°+ 25+ 3Axyz + Bayz + 3fzx + 3yxy +30x + 3ey + 3(z.

Here, EG corresponds to the A-axis. Each function has total multiplicity of critical points equal
to 8, so the corresponding stratum has dimension v —1 (if singularities are simple). In parti-
cular, the case v = 2 of functions with two critical values gives one-dimensional strata, each
of which must be an orbit of the group action

(“: ﬂ: ) d, €, g’ A) .t = (OLt, ﬁt> vt 8t2> 6t2> §t2’ A)>

and so is a parabola (or line) meeting the E, stratum at a unique point. At such points, the
frontier condition breaks down, unless we segregate them into distinct strata.
These exceptional points are determined in §7.5, by calculating the j-invariant

_(8A—29s
J = sa(tr a0

in each case. As well as the values j = 0, 1 there are fifteen other exceptional values of j. This
makes a precise description of Looijenga’s canonical stratification, even for this first nontrivial
case, seem very difficult.

1. REVIEW OF GEOMETRY OF GCUBIC SURFACES
1.1. Plane sections

The best known feature of the geometry of a nonsingular cubic surface § — the existence on
it of 27 lines — will not play much part in this paper. We begin instead by considering plane
sections. These are cubic curves, nonsingular unless we have a tangent plane 7, when 7 n §
is usually a nodal cubic. If it is a cuspidal cubic, the point of contact is said to be a parabolic
point of S. These points lie on the curve of intersection of § with its Hessian surface 7. Since
T is quartic, the parabolic curve § n T is of degree 12.

If 7 passes through a line [ of S, then 7 n § will usually be a conic with chord /, meeting the
conic at two points where 7 is tangent to S. If 77 is tangent to § at a parabolic point on / (there
are in general two such), we have a conic with tangent. If 7 passes through one of the (ten)
other lines on § meeting /, 7 n § is a triangle, and 7 a tritangent plane. Exceptionally, the
three lines may concur: in this case, the point of contact of 7 is an Eckardt point (E-point).
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If § is singular, as well as the above possibilities 7 0 § may contain a repeated line or even
a three-fold line. We call a non-singular point P of § an E-point if it is a triple point of the
intersection 77 N § (7 the tangent plane to § at P). The parabolic curve is nonsingular except
at singular points and E-points of § (though it may have repeated components: see below).

1.2. Polar quadrics

We may polarize the cubic form defining §, and thus associate to each point Q of projective
3-space its polar quadric 2 with respect to S. For general Q, X is nonsingular: the points Q
for which it is singular are precisely the points of the Hessian surface 7. The vertex of X
is also a point R of 7, and X'y has vertex Q: we thus have an involution of 7. Moreover Q
lies on Xy if Q € S, and Q is a vertex of X only if Q is a singular point of .

At a singular point P, § has tangent cone Xp: P is said to be a conic node, or have type A,,
if 2'p is a cone; a binode if 2 is a pair of planes; and a unode if 2}, is a repeated plane. We
shall normally exclude unodes (where F has a singular point of corank 2) from consideration,
and will always exclude cases where § has a non-isolated singular point. If P is a binode, we
call the intersection of the two planes the pinch-line of S at P.

There are in general just ten points QQ € 7" with 2; a plane-pair; such points are singular
on T. The list of cases when X', is reducible is as follows:

2 a repeated plane through Q, arising iff § has a unode at Q;

X, a repeated plane not through Q, arising iff § is a cyclic cubic surface (e.g. F = 23+
B (%1, %s, %3)) with Q a vertex (X,); here the plane of X is a component of T';

2, a plane-pair with both planes through Q, arising iff § has a binode at Q;

X a plane-pair with one plane through Q, arising iff § has an E-point at Q;

X a plane-pair with neither plane through Q, the general case.

1.8. Singularities

The isolated singularities that a cubic surface (other than a cubic cone) can possess are all
rational double points: we shall use the notation of Arnol’d (1972) for them. The types that
actually occur are A, (1 < n < 5), Dy, Dy and E4. These are characterized geometrically as
follows (see Bruce & Wall 19%9).

If P is a conic node, it is of type A,.

If P is a binode, we can take coordinates with P at X, and 2 as x;x,: then

F = 6xgx3 25+ @ (%1, %p, %3).

If the plane cubic ¢ = 0 does not pass through the point Q (x;, = x, = 0), P has type A,.
If it does, but neither x;, = 0 nor x, = 0 is tangent at Q , P has type A,. If (say) #, = 0is an
ordinary tangent (resp. inflexional tangent) to ¢ = 0 at Q, then P has type A, (resp. A;).
Although ¢ = 0 may be singular, ) cannot be a singular point else x; = ¥, = 0 would be
a singular line on §. Observe that the pinch-line at a binode of type A, lies on S only if n > 3.

If P is a unode, the plane 77 of X', meets S in three lines through P. If these are distinct, P
has type D,; if two coincide, it has type D;; and if all three coalesce, it has type E4. Each of
these lines may be called a pinch-line at the unode.

Surfaces may be classified according to the types of singularities they contain: for cubic
surfaces the enumeration is due to Schlafli (1864); a modern proof is given in Bruce & Wall
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(1979). With the assumption of isolated singularities and no triple point, the list of types is
as follows:
nonsingular,

'Kb A%} Az, A%) A1A2’ A33 Ag, A%Az, A1A33 A%} A47 D43 A%.A:i) A1A§> A1A4’ A53 Ds, Ag, A1A5, EG‘

Here, for example, AJA, denotes a surface with two singular points each of type A;, and a third
of type A,. This classification takes no account of the presence or otherwise of E-points.

1.4. E-lines on singular surfaces

As E-points will play a major role in this paper, we now explore their relation with singular
points. The key observation is

ProposiTION 1.4.1. Let | be a line on S, that is not a double line. Then the following conditions are
equivalent :

(1)  The tangent planes to S at all regular points on [ coincide.

(i1) There ts a plane section of S of the type Im.

(iii) The line lies on the Hessian surface T.

(iv) Either I passes through two singular points of S, or it is a pinch line at a binode or unode of S.

Proof. Take [ as the line x, = x3 = 0. The tangent plane at P = (g, ¢, 0, 0) is then

(@go2t® + 2891299 + a11297) X5+ (Agoa® + 2013p9 + a1134%) %3 = O,

so (i) and (ii) are each equivalent to the matrix

L= [aooz Ap12 anz]

Qo3 Q013 %113

having rank 1. Now the polar quadric XZp has matrix [ , where

0 4
AT B
A= [aoozp + 80129 03l + 0139 ]

L. . apof + 1129 Gorsp + 21139
so the quadric is singular iff

0 = det 4 = p%(agge @13 — p12%003) + 59 (@002 8113 — G112 8003) + 92 (A012 3113 — G112 %013) -

This is the condition that (p, ¢, 0, 0) € T. It holds for all p, ¢ again iff rank P = 1.

Finally, (p, ¢, 0, 0) is singular iff the equation of the tangent plane vanishes identically.
Now if aggep?+ 2891509 + 81129 = 0 has distinct roots, then agesp?+ 2a9;39 + a4139% is propor-
tional to it iff there are two common roots, giving two singular points on /. If the roots are
coincident — say @gy, = @y, = 0 — then proportionality demands the vanishing of 43 and ag,5.
But a3 = 0 means that X, is a singular point, and a@4,5 = 0 that its tangent cone reduces to
Agas %3+ 2aga3 X5 X5 + Ag33 43, €ither a plane-pair with axis / (hence a pinch-line at a binode) or a
repeated plane through / (hence X, a unode).

In proposition 1.4.1, condition (ii) also gives rise to a trifurcation: we may have [ # m
and the intersection point of / and m (a) an E-point or (a’) a singular point, or we may have
(b) I = m (plane section {2). In case (b), all regular points of / are E-points.
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A routine calculation now shows that these cases occur when the singular points in question
are of the following respective types:

(a) A;and A,; A;, D, or D}
(a’) Ayand A, (n > 1); A,, D2
(b) A, and A,; A;, E,.

Here the notation D} (resp. D) refers to the line of multiplicity 1 (resp. 2) in the intersection
7 n S. A reference to the above classification shows that this list is complete.

It follows from §1.2 that for a regular point P on an E-line /, X', is a cone unless P is an
E-point when we have a plane-pair. Now for any point Q , if g is a plane-pair, Q is a singular
point of 7. The converse holds except on pinch-lines:

ProrosITION 1.4.2. Suppose P is a singular point of T, and X' a cone, vertex Q . Then Q is a binode
(or unode) of S, and P is on a pinch-line at Q..

Proof. We can take P as X, Q as X,. Since Zp has vertex Q , a49; = @11 = Qo1 = a3 = 0;
since it is a cone,
%000 002 %003
D = | aps gy o3 | # 0.

. . . @003 Qo023 o33
The coefficient of x3 in H is

D(ay11%1 + @112%5 + 0133%3) 5
since this vanishes, a,;; = @335 = @533 = 0. But now Q = X is seen to be singular on §, and
X, is a vertex of X, and hence lies on a pinch-line at Q.

The pinch-line at an A,-singularity is not an E-line, since it does not lie on §. Apart from
the singular point, it contains two other points (possibly coincident) whose polar quadrics are
plane-pairs. »

For a general point P on an E-line [ of type (a) or (b"), Zp is a cone whose vertex Q also
lies on [; if [ is of type (b), the vertex of Xp meets / in a point Q. If [ contains two singular
points A, B then P and Q) are mates in an involution with fixed points A, B. If / is a pinch-
line at G, we always have Q = C.

Any E-line is multiply contained in the parabolic curve; we now give these multiplicities,
which will play an important part below. We also give the multiplicities as lines on .§ (these
must sum to 27) which are more readily obtained.

ProrosiTION 1.4.3. These multiplicities are given by table 1.4.3.

TABLE 1.4.3

multiplicity parabolic curve line on §
line through points of types A,, A, r+s (r+1)(s+1)
pinch-line at binode type A, 2(r—2) r(r+1)
pinch-line at unode type D, 2 8
pinch-line at unode type D} 2 ) 10
pinch-line at unode type D? 6 16
pinch-line at unode type E;4 10 27

A line through a singular point of type A, that is not an E-line does not lie on the parabolic
curve; it has multiplicity + 1 as a line on §.
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The cases of a line through two A; points or an A; and an A,, or the pinch line at an A,,
will be verified in §§2.2 and 2.3 respectively. The remainder concern surfaces each of which
* (except A2) has a unique normal form. The parabolic curve can be determined explicitly in
these cases by a direct calculation, and the result thus verified.

2. GRITICAL POINTS AT THE SAME LEVEL
2.1. Relation to points of S, N T,

If f has distinct critical points P, Q) at the same level, f(P) = f(Q) = g, then the line PQ is
an E-line of the level surface S, f(¥) = @, and so is a multiple intersection of S and 7. Thus
the point where it meets x, = 0 is a point of multiple intersection of S, and T,.

Conversely, consider any such point of multiple intersection. We may choose coordinates
with the point at X, and the tangent plane there to § as x, = 0. This plane meets § where

_ 2 2 3
0 = 3%, (@991 %3 + 2a913 %0 X3 + @113 %3) + Qoo X3 + 3oz X§ X3 + Bysz X 43 + A33343.

Since X, is a parabolic point, this curve has a cusp at X, s0 ad;3 = @g0; 133

If agyy = ag3 = @133 = 0, X, is an E-point of all level surfaces: such a point we call an
E-point of f. Otherwise we can choose the cuspidal tangent to lie along x; = 0 (so that
@1 = Ggy3 = 0) unless it lies along x, = 0 (the case when ay,; = a5, = 0).

Since X, is a point of multiple intersection of S, and T, the coefficient of x}x; in A must
vanish. We calculate this coefficient as

2 i = -
~ o3 @1atiss  (if Ggoy = @13 = 0),
2 i = -
Bo018R120533 (I Gp13 = @153 = 0).
Now a,;, cannot vanish, as X, is not singular on S, nor can we have a,3;, = 533 = 0, else
%, = 0 would be a component of S, again imposing a singularity. Thus if X, is not an E-
point, the second of the above two cases cannot occur, and we must have gy, = 0.
But now the level surface for which a4, = 0 meets x, = 0 in
= 42
0 = x§(3aqg3 %0 + 3a135%1 + @333 %3),
so that ¥, = #3 = 0 is an E-line on this surface. We have thus proved

Prorosrrion 2.1.1. A4 point on S is a point of multiple intersection of Sy, and T, if and only if it is
either an E -point or lies on an E-line of a (unique) level surface of f.

By proposition 1.4.3 such a line either passes through two critical points of f (at the same
level) or is a pinch-line at a binode (or unode) which is thus V-related to our point. We examine
these cases in turn.

2.2. Distinct critical points

We continue with coordinates as in §2.1: thus the tangent plane x, = 0 at X; meets §
twice in the E-line x, = 3 = 0. The tangent plane at a point P = (p, ¢, 0, 0) of the line is thus
0 = x5(agog p* + 24912 p4 + 31129%),

and P is singular if the expression in parentheses vanishes. If a§;; # @49,,,, the line contains
two distinct critical points. In this case, X, is not a singular point of T, ; we wish to check the
order of contact of S, and T, at X,.
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We can set x, = 1 for this: then if x; has order ¢ along either curve, x, has order #2, so the
terms of least order are 3(ay,x3%,+ aya3%,43) for F,, and the terms in x3x,, x342 for H,. A
direct calculation from the determinant shows that these terms are

2 242 42
1120133 (@12 — Ggoz @119) ¥3 % + (9120133 — Boag G112) 26343,

Thus the intersection number is at least 3 if and only if

2 _ 42 (a2
(@p12 3133 — Q33 8112)® = @333(@B1a — Bgo2@112)5

: 2 2\ _
1.€. @112(@002 @Fa3 — 28912 Gog3 Brzz + 4112 353) = O,

which means that (—agy3/a,33, 0, 0) is one of the two critical points under study.
On the other hand if (e, 0, 0) and (#, 0, 0) are these critical points, so that

@y = —3(x+f) s a2 = afayy,
then 0;if (@, 0, 0) = ag;;+aay;

vanishes for (7,7) = (1, 1) or (1, 3), so the determinant of this matrix is — (0,,F)20,;3F, which

equals
4 — (@g12 + #8y12) % (Ags3 + A133) = — 1(B — )2 a115(ag33 + Xay33),

which vanishes only when & = —a33/a,35. Hence this is the condition for the critical point
to have type higher than A,.

Thus only one point Q on the line can have higher type than A, (indeed, the line joining
two A, consists of E-points), and it does so iff the intersection multiplicity of S, and T, at X,
exceeds 2.

Now substitution of x, = 0 in H,,, reduces this to

Ggs3¥3  Go1X1 + Gga3 ¥y
Qy33%3  Gy39X1+ Gpa3%3

so in fact x, is a bitangent, with second contact P where

Q23 Qo33
G123 G133

Qy12 @
0 = | %12 %3 |, %

Q112 G133

I claim that in the above situation, P is on the pinch line of Q). We can take Q at X,: then
o3 = 0, 50 P = (@453, 0, —ay;,) and the matrix of the polar quadric of P has vanishing first
row, and hence indeed has X, as a vertex. Observe that P coincides with X; only when
@912 = 0, so the two critical points coincide.
We also deduce that Q) has type A, (or higher) < P e S.,.

We conclude our analysis of this case by proving

ProrosiTION 2.2.1 If the critical points on XX, are of types A, A, then the intersection multiplicity
of Ses Too at X, s n+1.

Progf. Letus write mfor the intersection multiplicity : then we showed above thatn > 2<>m > 3.
We now check the condition for m > 4. Near X, on S, T, we take x; = 1, x; = ¢: then x, has
order #2, and we have already checked the coefficient of ¢2 in the two cases. Terms of order ¢
in the equation are 6a,5y%; X, %3 + 33343 (F,,) and the terms in x3x,%,, x,43 (H,). We may con-
tinue to suppose 0 = gy = dgg3: then x, = — (a,53/a4,,) 2+ higher-order terms, and the terms
of degree 2 in W = 3H, — lyaigs P

42 Vol. g02. A
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cancel out. The coefficient of x3x,x, in H,, is

2
@315(@112 0333 + 20,193 0133) — 204150003 8112 8133,
and the coefficient of ¥, 43 is that in

2
Qg19%; + Goo3 X3 Y

namely 2ay,5a 02 .
A ’ 012 “023 “133
Q112%1 f Q123%3  Q133%3

Hence the coeflicient of 3 in ¥ is

2 2
3 (81201120333 + 208120193 Q133 — 28912 G5 A1120133) ( — @133/ 0112)
2 2
+ 6412 Byo3 A3a3 — 0315013316105 ( — @133/ 112) + G333}
= 48415133(38093 8133 — Q12 8333) -

This vanishes iff m > 4. On the other hand, n > 3 iff P(agy,, 0, —ay,) lies in S, i.e.

0 = a3;5(3a133 8023 — G333 012)-
As a,33 # 0, these conditions are equivalent.

The proof for the higher-order cases is now completed by referring to proposition 1.4.3:
we showed there that for n > 3, the parabolic curve has the line XX, as a component with
multiplicity n+ 1. As 7, passes through no singular points, it meets this line transversely at
a point on no other component of the parabolic curve, so the local intersection number m of
F, and H, must equal n+ 1.

Reversing this argument allows us to complete the proof of proposition 1.4.3 for the cases
hitherto omitted.

2.3. Coincident critical points

This case is more easily handled by a different normalization of coordinates. Take the binode
of § at X, and its polar quadric as x,x3: then

F = 6xyx5%5+ P(x1, %2, 3),
where, since X, is an A, (at least), a;;; = 0. The tangent plane along the pinch-line is
Q1192%2 +8113%5 = 0.
The coeflicient of x% in H is (@119%9 — Qq13%3)%

Now a,;, and a,;; do not both vanish (X, is not singular on §,), so 7" has a double point at

X, with tangents coincident along
115%, — 11X = 0.

Unless this agrees with the tangent (above) to S, the intersection number is 2: however, it
only agrees if a;;, or a;;5 vanishes, which is the condition for X, to be of type A, (at least).

Proposition 2.3.1. If X, lies on the pinch-line of a binode of type A, (n = 3, 4, 5), the intersection
multiplicity of Sy, and T at X, is 2(n—2).

As for proposition 2.2.1, the remaining cases are covered by an appeal to proposition 1.4.3.

2.4. The E -point case

We return to the normalization of §2.1. The restriction of f to the plane ¥, = 0 now depends
only on the affine coordinate x,: write

Pi(%3) = @ga5%3 + Bay3a x5 + Bagg3 X3 + dggos


http://rsta.royalsocietypublishing.org/

JA \
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

AFFINE CUBIC FUNCTIONS. IV 425

where (as already noted) ag33 % 0. We say the E-point X, is type a (resp. b) if the critical
points of ¢; are distinct (resp. coincident), i.e. if ag33a033 # (resp. =) as3. For type a there
are two choices of gy, (for type b, only one) for which ¢, has a repeated factor. Such a repeated
factor yields an E-line of the corresponding level surface.

Moreover, for type a, each of the two level surfaces in question has an intersection with
x, = 0 of the type {2m. As the point X, of intersection of / and m is an E-point (not a singular
point), these E-lines are both of type a in the terminology of §1.4, so each one passes through
critical points of types A2, As, D, or Di. In case b, the relevant level surface meets x, = 0 in
a threefold line 3, so [ is an E-line of type b in the terminology of §1.4: it thus passes through
critical points of types A%, A; or Eg.

The polar quadric of X, is a plane-pair with the tangent plane %, = 0 as one of the planes
and the other plane not through X;. We normalize coordinates further by taking this other
plane as x; = 0. Then

F = 3x1x, + ¢(x0> X2; xs)-
The line #, = 0 is an inflexional tangent at X, to S, which is given by an equation almost
in Weierstrass normal form. The critical points of f are given by the equations

0 = xlxz, 0 = 3x%+62¢, 0 = aa¢.

On the plane x, = 0, 03¢ vanishes along the two E-lines (one for type b), and the second
equation determines equal and opposite values of x, (in general distinct) on each. If we consider
¢ as a function on an affine plane, its restriction ¢; to x, = 0 has two critical points P, Q
(which coincide for type b) and each of these yields two critical points of f; which coincide if
0, ¢ vanishes at P, Q respectively. We further classify the E.-point to have type a, (r = 0, 1, 2)
or b, (r = 0, 1) if 0,¢ vanishes at 7 of the points P, Q. Moreover, we call all these critical
points on the tangent plane E-related to X.
The properties of this classification are summarized in

TuareorREM 2.4.1. An E-point with no E-related critical point of corank 2 has properties given by
table 2.4.1.

TaBLE 2.4.1
type of E -point a, a, a, b, b,
E-related critical points of f AZ/A2 AZ/A, A/A, A2 Ay
intersection number of S, and T, 2 2 2 4 6

Proof. The second row in the table is given by the preceding discussion.
We choose one of the levels that gives us an E-line and apply proposition 1.4.3 (now proved
in all cases) to obtain the intersection number of S, and 7.

3. NETs OF QUADRICS, AND CRITICAL POINTS

We consider the cubic function f = f(x,, %5, x3) of three variables, with our standard
notation.

3.1. Background: summary of Wall (1978)

The critical points of f are given by the equations 0 = 0f/0x; = 9f/0x, = f/0x;. Thus
they satisfy 0 = Z3.,y,0f/0x; for all (y, y5, y3). With C3? identified with the subset x, # 0
of P4(C) in the usual way, this means that & lies on the polar quadrics of all the points

42-2
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(0, 41, Y2, ¥5). Thus the critical points of f are the base points of the net of polar quadrics Z'p
with respect to S of all points P on x, = 0. If this net has a base point Q on the plane x, = 0,
then since 0 = 0F/0x, = 0F/dx, = 0F/0x; at Q, Q is a singular point of the ocurve S, of
intersection of S with the plane x, = 0. We shall suppose throughout this paper that fis such
that the curve S, is nonsingular, so that none of the base points can lie on %, = 0.

The quadrics 0 = X¥_,y,0F/0x; = F¥(«, x,¥) (y, = 0) of the net are parametrized by the
points Q (with coordinates y) on y, = 0. The quadric X, is singular iff Q lies on 7. In Wall
(1978) I classified nets of quadrics parametrized by 4 = (A, g, v) in terms of the quartic curve
of points 4 corresponding to singular quadrics. We thus see that in the present situation this
discriminant curve coincides with the intersection T, of T with x, = 0. We now apply the
results of Wall (1978).

The discriminant curve T,, determines the net up to the action of GL,(C) and a 36-fold
ambiguity. Part of this ambiguity is resolved by the study of base points of the adjugate system.
This system is defined by halving the system cut on T, by the cubic curves

(X Xy X X3) adj 0(y) (X, Xy, Xy, X3)T = 0

for some (X,, X, X,, X;) € C4 These adjugate base points can occur only at singular points
of T,; a singular (double) point of type A, may have multiplicity r as adjugate base point for
any r with 0 < 7 < }(n+1). Triple points may also occur. A singular point P of T, is an
adjugate base point (with multiplicity » > 1) iff 2 is a plane-pair (if Zp is a repeated plane,
P is a triple point).

In Wall (1978) I classified nets as stable and unstable. The theorem in Wall (19804, §5) is
as follows.

THEOREM 3.1.1. Let f be a cubic function on C3 such that (with the above notation) Sy, is nonsingular.
Then the following conditions are equivalent :

(i) f has a critical point of corank 2; (ii) the net of quadrics discussed above is unstable; (iii) the curve
T, has a repeated component.

Moreover, the case when these conditions are satisfied was fully discussed in Wall (1980a).
We can thus exclude it (except for occasional mention) in this paper. Now for stable nets I
determined in Wall (1980¢) the multiplicities of the base points; this result is given next.

3.2. Summary of Wall (1980¢)
Write our net of quadrics as

F(h, ) = aT(QgMy+ A, My + A, M,) »

in matrix notation, with quadrics
x = {&:F (4 &) = O}
Define the total variety
V= {(ls x):F(4, %) = O}’
the variety of base points
B = {x:(Vi), F(4, %) = 0},
and the discriminant
A = {A:det (AgMy+ A, M, + A, M,) = 0}.

For any variety W, write S(W) for its set of singular points.
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These notations are taken from Wall (1980¢), and all references in this section will be to
that paper. Now (lemma 1.2) a point & of B belongs to S(B) iff there exists 4 (necessarily in 4)
with ¥ € §(Q ;) : an equivalent condition is that M, ¥, M, ¥, M, & are linearly dependent. If these
span a two-dimensional vector space, so that the linear relation (hence the point 4) is pro-
jectively unique, we call & fame. In this case, we say & is V-related to 4. For a stable net (lemma
4.1), all base points are tame. Further (see §4.1) for a net of quadrics in P4(C), a tame point
» has multiplicity /+ 1 as base point of the net iff it is a singular point of B of type A;: thus in
particular, & belongs to §(B) iff the multiplicity is at least 2.

Now (lemma 1.1), (4, &) € S(V) iff ¥ € §(Q,) n B. Thus if all base points are tame, pro-
jection gives a bijection between S(V) and S(B). Moreover (proposition 1.3) if x € §(B) is
tame, and is V-related to A, the singular points (4, #) of V' and & of B have the same type.
For our present purposes, this means type A, for the same value of /.

The main results give relations between S(4) and S(V), which are most conveniently ex-
pressed in table 3.2.1. In view of the results above we can equally well regard these as relations
between $(4) and S(B). Moreover, it will avoid confusion in later reference if we list the multi-
plicity /+1 as base point, rather than the type A, of singularity of B. Note however that since
[ > 1, these multiplicities are all greater than or equal to 2: any entry in table 3.2.1 yielding
multiplicity less than or equal to 1 has to be deleted.

TasLE 3.2.1
nature of adjugate multiplicities references to
singular corank base-point of V-related equations in
point A on 4 of Q, multiplicity base-points Wall (1980¢)
A, 1 0 m+1 (1.4)
A, 2 1 <5< §(m+1) ssm—s+1 (3.1)-(3.3)
Dy 2 —_ m+1 (3.4), (4.2)
D, 3 — 2,2,2,2 (3.6)
Dy 3 — 4,2,2 (3.6)
D, 3 — 4,4 (3.6)
Eq 3 — 6, 2 (3.6)
E, 3 — 8 (3.6)

No other cases arise for stable nets. The first row in the table can be regarded as the case
s = 0 of the second.

3.3. Special character of the net

The relations described in §3.2 are valid for all (stable) nets. The nets occurring here are
not, however, arbitrary. It was shown by Turnbull (1935) (I am indebted to the referee for
this reference) that a net occurs as net of polar quadrics of a cubic iff it satisfies a certain
condition — and then it so occurs in c0? ways. This condition, which also appears in work of
Barth (1977), may be stated as follows. If M, M;, M, are matrices of independent quadrics of
the net, with M, nonsingular, M; M3* M, — M, M ' M, is singular.

The condition in this form is not directly relevant to our classification, but we can obtain
strong restrictions by a geometric analysis of the V-relation. We assume that f has no critical
points of corank 2, so (theorem 3.1.1) the net is stable.

As in §3.1, we have 4 = T, and for any P € 7, the quadric @, is the polar quadric of P
with respect to S. A base point X of the net is a singular point of f, of type A, for some £ (the
corank is 1). Its multiplicity as base point is the local intersection number of the quadrics
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0f /0x; = 0 (i = 1, 2, 8), which coincides with the Milnor number %. Thus X is a binode of
the corresponding level surface § <= k£ > 2 < Xis V-related to some point P of T, i.e. X €.5(Q,)-
But then (by §0.1) P is on the vertex of the polar quadric of X.

This confirms that if £ = 1, X (a conic node) is not V-related to anything. For £ > 2, X is
a binode; the vertex of its polar quadric is its pinch-line, and X is V-related to the unique
point P where this line meets 7. It follows that P € .S <k > 3, for the pinch-line of an A,-
point meets the surface only in that point.

Thus suppose P € T, does not lie on S,. Then all V-related critical points are of type A,.
This excludes all but five of the cases in table 3.2.1.

Next suppose P is a singular point of T, that does lie on . Then it is a point of multiple
intersection of S, and T, so we can apply the results of §2. If P is not an E,-point, its polar
quadric is a cone: thus P is of type A; (some /); there is a unique V-related X, which has type
Ay, 50l =2o0r 3 (if I =4, Pis an E,-point). For P an E_-point, we have five cases, as
listed in table 2.4.1: the V-related critical points here are those on the line x;, = x, = 0 in
the notation of §2.4.

Thus of the 23 possible types of singular point of 4, listed in Wall (1978), only nine occur
in the present problem, namely those in table 3.3.1.

TaspLE 3.3.1
adjugate multiplicity
singularity corank base-point of V-related
type of case of T, of Q, multiplicity base-points
not on S, Ay 1 0 2
—_ Ay 2 1 —_
— A, 2 1 2
— A, 2 2 2,2
— D4 3 —_ 2,2,2,2
on S, A, 1 0 3
— A, 1 0 4
E,, a, A, 2 1 —
Eo, 2, A, 2 1 3
E., a, Ay 2 3 3,3
E,, b, A, 2 1 —
E,, b, Ay 2 1 5

In §4 we shall discuss all cases when T, contains a point P whose polar quadric has corank
greater than or equal to 2. In §6 we enumerate all cases when there is an E-point, and in
§5 all cases when T, contains a line: it is shown in §4.2 that this includes all cases of the fourth
and fifth rows above. The V-relation in these cases is discussed in §5.5 and §6.3: we shall see
that all the cases just listed do occur.

Just as we do not obtain all nets, we do not need the full classification of the net corresponding
to f to determine the critical points of f. In particular, a singular point P of type A, of T,
with polar quadric a plane-pair, has no V-related base points and will not affect our classifi-
cation (unless it also lies on S, and is thus an E.-point).
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4. ENUMERATIONS (GENERAL CONSIDERATIONS)
4.1. List of six cases

The number of cases arising is so large that we have not yet been able to give a complete list.
Under any one of several auxiliary conditions, however, this becomes feasible. Most of these
conditions involve having a point P at infinity whose polar quadric 2}, is reducible (so P is
an adjugate base point for the net). Indeed, the results of §2 cannot easily be applied, since
the calculations required to determine contacts of S, and T, are so complicated in general.

In this section we give a general discussion of cases arising when X} is reducible: particular
cases will be treated in more detail in later sections. We start from the projective (rather than
affine) viewpoint. Let Zp = 7, 7,. Then if P € 71, n m,, P is a singular point of § (hence of ),
so we exclude this case. Otherwise we may take projective coordinates (w, ¥, y, z) with P at
W,mnmasw=x=0.

Take mymy = aw?+ 2bwx + cx® Then

F = awd+ 3bw?x + 3cwx?® + ¢(x, y, 2),
aw+bx  bw+ex 0 0
bw+ex cw+ 0,9 Opp 0530
0 02 029 0y

0 0139  Opp 0336
= (aw + bx) H(P) +{(aw + bx) cw — (bw + ¢cx)?} M(¢),

where H(¢) is the Hessian of ¢, and
M(¢) = 055$ 0336 — (0g50)%

The equation of the tangent cone to 7" at P is thus
(ac—b2) M(p) = O:

it is a quadric cone, which is of rank 3 (irreducible) iff ac # 6% and 053¢, O0y3¢0 and 053¢ are
linearly independent.

Now choose a plane 7, through P and consider the traces of all the above on 7. By con-
sidering the tangent cone (ac — 62) M, (¢) to T,,, we may distinguish six cases, as follows. In the
first five, ac # b2.

(i) M,(¢) has distinct factors; P has type A, on 7.

Next suppose M, = [ a repeated line, and consider the coefficient aH,(¢) — bexM,($) of w
in H,.

(ii) The line does not divide this, so P has type A, on 7.

(iii) The parameter ¢ = 0, so P €§ is an E_-point.

(iv) The line ! divides H,.

If finally P is a triple point of T, then either

(v) M,(¢) vanishes identically, or

(vi) ac = b2 so my = m,.

H = det

4.2. Preliminary discussion

We now discuss these six cases. In (i), there are no critical points V-related to P, so this
condition is not relevant for our classification. In (ii), P had type A, and so (by §2.2) is V-
related to a single critical point of multiplicity 2. This case is still too general for a full dis-
cussion. Some discussion of cases (i) and (ii) is given in §4.3.
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Case (iii) will be fully discussed in §6. For case (iv) we have

Lemma 4.2.1. If [ is a line of intersection of H(P) = 0 and M(¢) = 0, then the polar quadrics of
points of I form a pencil with a common vertex.

The case when 7, contains a line / whose polar quadrics 2 (P € /) form a pencil with a common
vertex will be fully discussed in §5. Case (v) is dealt with by

LemMA 4.2.2. If M, (@) vanishes identically, the corresponding affine function f has a critical point
of corank 2.

Thus case (v) has been discussed in Wall (19804). Finally, in case (vi) Z'p is a repeated plane
m% If m meets the plane at infinity in the line /, then for each Q e/, X has P as a vertex.
Thus here again the net contains a pencil with common vertex and we refer to §5.

For the proof of the lemmas, note that if AM(¢) vanishes on some linear subspace, then

Opap = %k, 03P = affk, 033 = %

for some constants a, # and linear form k£ on the same subspace. Substituting, we have

H(¢) = — k(20139 —f0138)°

on the same subspace.

Proof of lemma 4.2.1. Here we have a line /, and so a subspace of points (xq, Ayy, Ay, Ays)
with y, ¥, y; fixed and x,, A variable: we can take £ = A. As H(¢) vanisheson/, 2 0,3¢ = £0,,¢.
If (a, B) # (0, 0), the polar quadrics all have vertex (0,0, —f, &): when & = £ = 0, they
have vertex (0, 0, 0,54, — 0;,¢) (where these are evaluated at (y,, ¥, ¥3))-

Proof of lemma 4.2.2. Here the subspace is 7,,. We have
My(9) = 0, Ho(9) = —k(ad13—F0128)%

so H, = (ax,+ bx;) H,(¢) has a repeated factor. The conclusion now follows by theorem 3.1.1.

4.3. Remarks on cases (i) and (ii)
We return to the general case of (i) and (ii) above. The case when the three planes m,, 7,

and 7, are collinear (i.e. 7, and 7, are parallel) will be fully discussed in §5. Otherwise we
can take 7, = x,, P as X;, m;m, = x3—% and so

F = x:{" 3x1x§+¢(x0, X2, xs)-

The critical points of f lie on 7, or 7, and are also critical for f| 7;; conversely the critical
points of /| 7, are also critical for f. In case (i) there are no critical points on 7, N 7,; in case
(ii), there is just one, of multiplicity 2: each f| 7, has a critical point of multiplicity 1 there.
Asin §4.1,
H(F) = x H($) — (v} +3) M(¢),
where H(¢) is the Hessian of ¢ and

M(¢) = B0 0336 — (3 9)*.
T, has a double point at X, (of type A, for (i), A, for (ii)), but contains no line through X,
(in fact X, cannot even be a flecnode): its other singular points (if any) are thus (Bruce &
Giblin 1981) at repeated roots of the discriminant (consider H,, as quadratic in x,)

A = {Ho($)}* — 445{M.o($)}2.
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Moreover (Bruce & Giblin 1981) T, is reducible iff 4 is a perfect square (or H,(¢$) and
xyM,(¢) have a common factor). As 4 is already a difference of two squares we have the
classical equation 4? = v®2+w? and as we have a unique factorization domain the classical
argument applies to show that if 4 is a perfect square,

H,(¢) = A(B2+C?)
xyM,(9) = ABC,

for some A, B and C. As H,(¢) has odd degree, so has 4; we can take 4 = x,; otherwise
H,($) and M,(¢$) would have a common factor. The same reason shows that B and C are
distinct, so we are in case (i) and not (ii).

One may consider f | my, f| 7, as functions of x, and x3 by substituting x; = x,, —x, respec-
tively. All the critical points lie on the conic 03¢ = 0, and one could approach the classification
problem in this way. The trouble is that the relation between the two functions is not very
close, and we have no useful way of characterizing the condition that a critical point of f|
and one of f| 7, correspond to the same critical value.

4.4. Lines in T, and singular pencils

The case when T, contains a line of points P whose polar conics Xp form a pencil with a
common vertex played a part above. We now ask when T, can contain a line A corresponding
to a pencil with no common vertex. There is a unique type of such a pencil; it has Segre symbol
[1; 1] see Hodge & Pedoe (1952, p. 289).

THEOREM 4.4.1. Suppose A <= T is a line of points whose polar quadrics do not have a common vertex.
Then A passes through an E-point of S.

Proof. Let P be the point on A with Zp a plane-pair. We may normalize as in §4.1 with P
at W. Then

H(F) = w¥{(ac—b5%) M($)} + w{aH (@) — bexM($)} + {bxH($) — 32 M ($)}.

The line A is given by ratios (x:y:z) for which the three terms in curly brackets vanish. Now
ac # b2, else the polar quadric of P would be a repeated plane, which cannot occur in a pencil
of quadrics of the type considered. Hence M(¢) = 0, so aH($) = 0. But if M(¢) and H(g)
both vanish on A, then by lemma 4.2.1 the pencil has a common vertex. Hence H(¢) # 0,
so a = 0. But now P is an E-point (the tangent plane x = 0 at P meets S in the line-triple

0=x= ¢(0: Y, Z))

5. CASE OF SINGULAR PENCIL WITH COMMON VERTEX
5.1. Review of cubic functions on C?

Our procedure for the classification in the case when the net contains a singular pencil with
common vertex will be to reduce to the case of cubic functions on C2. We therefore begin by
reviewing earlier results (Wall 1979) for this case. Suppose then ¢:C? — C is a cubic function,
associated to the homogeneous @:C% - C as usual by D(u, v, w) = wid(u/w, v/w); we may
also suppose that some level curves ¢—(a) are elliptic (equivalently, none have any singularities
at infinity).

43 Vol. go2. A
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Cases fall into three divisions, according to the type of the binary cubic ®(y, v, 0) (corres-
ponding to S, in this paper): we have type I (distinct factors), type II (a repeated factor)
and type III (perfect cube). Each type is further divided into species, according to the nature
of the critical levels; we label these by small greek letters. The species may also be characterized
in terms of the interrelation of S, and T, (intersection of H(®P) = 0 with w = 0).

The enumeration is conveniently made by using normal forms. For type I, we take

@(u,v) = ud+v3+ 6auv + 3bu+3cv +d.
The species are as follows. Write
A = 27a%— 18a%bc — 4a(b3 + ¢3) — b%?2.
Then the details are as in table 5.1.1. Similarly for types 1I, III we take
(v, v)
¢(u,v) = ud+ov2+au+b, (type III),

uv+vi+butev+d, (type II),

I

and we have the six species described in table 5.1.2.

TasLE 5.1.1
species conditions singular levels T,
To A#£0, b #¢ A /A AL A, 1,1,1,
1B A=0, a#0, b #c Ay /A /A 2,1
Iy Bo= ot £ 0, 22700 AY/A/A, (n), 1,1
15 PB=c=a"#0 A, /A2 1,2
Ie b =3 =—-27a% # 0 AgfA, (3)
114 b=c=0, a#0 A3/A, (1,1, 1)
In a=1bc=0, b #c A,/A, 2,1
10 a=b=¢=0 D, 0

TABLE 5.1.2
species conditions singular levels Te
o b#0, 43+2762 # 0 Ay/A A, 1,1,1
g b#0, 43+27b2 =0 A,/A, 2,1
IIy b=0, ¢#£0 Al/A, (1, 1,1
113 b=¢=0 3 (3)
Il a#0 A /A, n, 1,1
1118 a=0 A, 1),2

The notation for T, denotes the three points, with their multiplicities: a point is enclosed
in parentheses if it also belongs to S, and underlined if its polar conic is a repeated line. It
should be noted that a root of multiplicity r of a binary form is a singularity of type A,_,.

5.2. Canonical forms: reduction to study of ¢

Now suppose A = T, is a line consisting of points P whose polar quadrics Xp have a common
vertex V. We cannot have V € A, else V would be a singular point at infinity of S. By duality,
each P e A lies on the vertex of Xy which is thus a plane-pair with vertex A, or a repeated
plane.

The basic idea of the classification in this case is to choose a plane 7 through A but not through
V, and to consider the restriction ¢ of F' to 7. We shall see that each critical point Q of ¢
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determines two of F (in general distinct) on the line VQ . Then we use, first, the species of ¢
(as in (5.1) above) and, secondly, a calculation of critical values of F in terms of those of ¢ to
determine when critical points (or values) coincide.

This programme requires us to list various cases arising, and use normal forms for each case.
We can always take A to be the line x, = x3 = 0; and take V to be X (if it is not on 7,) or
X, (if it is). We find

(V = X,) F = F (%, Xy, x3) + 3bx3xy + 3cxgxy + dxd,
(V =X;) F = D(x, xq, %) +3b'x3x5+ 3¢"xyx3 + d’'x3.

When V = X it is of little advantage to normalize further. There are three subcases: (i)
(the general case) b # 0, ¢ % 0; (ii) b = 0, ¢ % 0; (iii) & # 0, ¢ = 0 (here X, is a critical
point of corank 2). We ignore b = ¢ = 0 since here X, is the only critical point (of type Es)
of F. We shall not exclude case (iii) since this is the general case for a critical point of corank
2, and gives a convenient occasion to recall the results of Wall (19804). When V = X, the
polar quadric 2y is given by 8’43+ 2¢'x,x, +d'x3 = 0; we cannot have d’ = 0 (else S, is sin-
gular at X;) so may take d’ = 1, and then (replacing x5 +¢'x, by x3) ¢’ = 0; now set ' = —r2,
so that Xy is the plane-pair (x3+rx,) (x3—7x,) = 0. There are two subcases: (iv) r # 0, and
(v) r = 0, so we have a repeated plane, corresponding to case (vi) of §4.1.

We next choose the plane 7. When V = X, choose 7 as x; = 0 (half-way between the two
parallel planes of 2'y). Thus ¢(x,, x,) = D(1, x3, #,). When V = X, we again choose a plane
x¥3 = constant: it does not much matter which constant (in case (i) there is a preferred choice
x5 = —c/b half-way between the planes of Xy, but this is not available for cases (ii), (iii)) so

we take
P (%1, X3) = Foo(xy, x5 1).

When V = X, S, is nonsingular iff the curve @ = 0 is so ¢ may belong to any of the species
listed in (5.1); when V = X, we have

Foo(xls X5 xa) = ¢w(x1, xz) +xg,

so S, is nonsingular iff @, has distinct roots, i.e. ¢ is of type I.
Now consider critical points of f. Since these satisfy 0 = 0f/0x, = 0f/0x,, we deduce

(V= X;) (%, x,) is a critical point of ¢,
(V = X,) eitherxg =0 or (xy/x,, x,/x;) is a critical point of ¢.

Conversely if Q is a critical point of ¢ (on x; = 0if V = X and on x; = 1if V = X_), any
critical point of the restriction of f to the line VQ is a critical point of f. Moreover, if the
critical points on VQ are distinct, and not at V, they have the same type as the critical point
of ¢; if they coincide (but not at V), we have the ‘sum’ of Sebastiani & Thom (1971) with an
A, singularity. This doubles multiplicities and changes types as follows:

A, —~>A, A,->D, A;>E; Dy~ EG.

Critical points on x; = 0 (when V = X) are investigated similarly: the conditions
0f /0x, = 0f/0x, = 0 show that the corresponding point is a repeated root of @, = 0, and
the repeated root (if any) determines a line through V along which we may check 8f/0x,.

43-2
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5.3. Relation between critical values of ¢ and f

Now let Q be a critical point of ¢ with critical value . We next seek to compute the critical
values of f on the line VQ . We take x, as parameter on this line. Then if V = X, we have

S =x3-3r¥%,+a.

The critical points x; = +7 are on the two planes of Xy, and the critical values are o F 273,

IV = X,
° f = axd+3bx3+ 3cx, +d,

and since @ = 0 is nonsingular, o # 0. The critical points are given by axj+ 2bx;+¢ = 0,
and so coincide iff 42 = ac; the critical values are the numbers d+ f# such that

ax®+3bx2+3cx—f3
has a repeated root, i.e. such that

o3 + 4ac® — 4863 + 60.8be — 3b%? = 0. (1)

A c

Za

Ficure 1. A, = 0;B,a = 00, § = 0; C, f = c0; D, a = 0, f = —¢2/b.

For a critical point on x; = 0, suppose X, is the repeated factor of @,: then 0 = a;3; = ay;,.
On x; = 0,
$0f/0xg = ayyaai+e,

giving two points (distinct if ¢ # 0), since @;;3 cannot vanish else X; would be singular on S,.
The corresponding critical values both equal d(f = 0). This may be regarded as the case of
(1) with @ = co. In case (ii) (b = 0), (1) simplifies to f2 = —4¢3/a, and in case (iii) (¢ = 0),
it simplifies to give # = 0 or # = 453/

To handle (1) in the general case, we use a standard geometrical method (see, for example,
Todd 1947, p. 90). Associate to « the point P, = (a2 «, 1) on the conic Z,: y2 = xz. Then
(1) states that P, lies on the line with dual coordinates

[2, 6beff + 4¢®, — (4678 + 3b%%)].
As f varies, these lines envelope a conic X
0 = ¢(302Y +4¢Z)? + 402X (20%Y + 3¢ Z).
Set &, = b?/c. The equation of X, in point-coordinates is
0 = x(30yz—4y) +ay(2052z — 3y)2.

It meets the original conic thrice where a = ay(f = —¢2/b%) and once where & = co(f = 0).
Three of the common tangents coincide at @ = «,; the other is at « = 0 (and joins it to the
point f = o0).
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From each point of 2, we can draw two tangents to X;: they are distinct unless the point
lies on Xy (¢ = ay or @ = o0). The contacts give the values of # corresponding to the given
values of a. Note that & = oo corresponds to critical points on #; = 0 (each giving two distinct
critical points of f); @ = a, to critical points of ¢ giving coincident critical points of f (which
then lie in the preferred plane x; = —¢/b). While f = —¢?/b arises only from ¢ = ay, f = 0
arises from a = $a, as well as from o = co.

We can apply similar geometrical methods to the other cases too. 2 has four-point contact
with X, in case (iv), coincides with X, in case (v), and is degenerate in cases (ii) and (iii).

5.4. Enumeration

We can now enumerate cases. Simplest is case (v) (Xy a repeated plane: this is the same
as case (vi) of §4.2). Here, ¢ can be any affine cubic of type I; the critical points of f correspond
to those of ¢, have the same critical values, and types determined by sum with x}. We thus
have eight species, which we denote by R:

(Ra) Az/Az/Az/Az, (RB) D4/A2/A2, (Ry) A%/Az/Az, (RS) D4/A§
(Re) Eg/A,, (RG)  A}/A,, (Rn) D,/D,, (R8) E,

Next we consider case (iii) (V of corank 2). Here, ¢ can have any of the species listed in
§5.1. Each critical point Q with ¢(Q) = a contributes to the multiplicity of V as critical
point, and adds a critical point at level 463/a2. Thus V itself is of type D,, D; or E¢ according
as ¢ has type I, IT or III, and ‘coalescence’ can occur if ¢(Q ;) = —¢(Q ,) giving equal critical
values for f. I showed in Wall (1980a) that all conceivable coalescences can in fact occur,
giving 28 species in all. In table 5.4.1 we denote them by D,, D, or E4 according to the type
of ¢. Here (D,0’) and (D,y), for example, represent different strata of the same type. In fact
(D,0") is also composed of two different strata. However, we can identify (Rf) = (Dyn),
(R3) = (Dyn'), (Re) = (E4B) (Rn) = (D,0) since the listing of cases with a critical point of
corank 2 is complete.

TABLE 5.4.1

(Dya) D,/ Ay/AL/BA, (Dya’) D/ A%/ A/A, (D) D,/A}Y/ A}
(DyB)  Dy/Ag/Ar/A, (DyB’) Dy/AsA /A, (D4B”) Dy/Aq/A}
(Dyy) Dy/AY/A/A, (Dgy’)  Dy/AY/A, (Dgv")  D,/AY/A}
(D45) D4/A2/A% (D45’) D4/A2/A§ -

(Dgg) Dy/ A/, A, (Dgg")  Dy/AzA, —

(D) D,/A}/A, (D)  Diy/Af —

(Dgm) Dy/Az/A, (Dgm’) Dy/ Al (Ds6) D,/D,
(Dsa) Dg/A/A, /A, (Dsa’) Dy/A}/A, -

(DsB) Ds/Aq/A, (DsB’) Ds/AzA; —

(Dsy) Ds/A}/A, (Dsy")  Ds/A} (Ds8)  Dj/A,
(Eeo) Eg/Ay/A (Bea")  Eg¢/Af (EeB)  Eo/A,

The simplest case is (ii) : here each critical point of ¢ gives rise to two for f, of the same type
and with distinct critical values, and f = £’ implies @ = a’. In case (iv) we have much the
same, but the extra complication that if ' = « + 4, the critical value f = a + 2 appears twice,
so we can have some coalescence. The same can also take place in (i); thus the cases arising
under (ii) and (iv) are all included in the enumeration for (i).

Here there are two further complications. If ¢ is of type II (or III), we count an A, (or A,)
with ‘e = oo’ giving rise to A2 (or A2) at the critical level W = 0. Any singularities of ¢ with
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critical level ay(= 62/c) are ‘doubled’ by sum with x® as above. Otherwise each singularity
of ¢ gives rise to two of f (at different levels), of the same type, but coalescences of critical
levels may occur as above. Note, however, that by Poncelet’s theorem (see, for example, Todd
1947, p. 92) ‘cyclic’ chains a; > f3;, B34 (1 < ¢ € n—1), a0, > f,,, A1 cannot occur.

We now tabulate the possibilities: we again borrow the notation of §5.1, but add the prefix L.
In table 5.4.2 we allow for singularities with critical level o, but not for coalescences. All cases
with a critical point of corank 2 are excluded. The first row names the case, the second gives
the singularities of f with @ = ¢, or co, and the third the remaining singularities of ¢ (each of

Y | \

_J which gives two singular points of f of the same type). In the cases LI3,, €,, {,, {3 no coalescence
< - is available. In cases LIB,, v, v3, 81, €1, &3, N and LIIB,, v,, 13, 8, LIII0,, B just one coalescence
> —~ is possible (for the six latter cases, with & = c0); we denote the case when it occurs by adding
2 45 a prime to the symbol. The remaining cases LIa,, oy, By, v, LIIay, 0y, By, v, and LIIIa, yield
M more possibilities, which are enumerated in table 5.4.3. In this table a symbol such as (L,, L,, Ly
MO p y
=0 signifies that the critical levels L; belong to critical values «, of ¢, and the corresponding critical
=w values f of f satisty a; — f;, B4, (so the chords &, of X, are tangent to X). Rather than
=2 include a; = oo in the symbol, we replace it by a vertical stroke: |L,, Lj).
O
=0
gb . TABLE 5.4.2
0

855 oy Oy B1 B T1 Ta Y3 3 By € € & L Cs n
§<Z! - A, - Ay - A A, — A} — A, - Ag Ay -

-4
o=

Ay/AJAAL AYAJAL AfA A AsJAy AYJAA) AjJAL ALJAL A AT Ay Aj/A As AJ/AL A A AY/A,
Oy 2 By Ba Y1 Y2 Vs 8
A} A /AT AT A /AT AT AY/AY A /AT A
AJAAL AJAL AJAL Ay AYJA A Al Ay
Loy oy B
A} A /A3 A}
AJAL A A
TABLE 5.4.3
X X/ X” Xm X[v Xv Xvi Xvil
Llo,  ApApAp Ay (Au ADAp Ay (Ap Ay (A Ay) (A Ay ADA; (A Ap Ay Ay) — —
Llo, ApApA (Ap AyA, (Ap Ay Ay) —

p
[\ \

4 LI Bs Az’ Ab A1 (Az’ A1)A1 Az(An Al) (Az’ Ala Al) (Av Az; Al) - -
— LIyy ALALA,  (ALADA, Af(ALA) (AL AL A (ApALA) — —
< LIIal Ala Ab Al (Al’ Al)Al |A1)’ Al) Al lAl) (Ab Al) (Al’ Al’ Al) |A1> AI)AI |A1> Al’ Al)
>" >'4 Lila, Ay A, (Ap Ay) [A)A; Ay, Ay) - - -
O H LIIB, Ay Ay (A Ay) |Ag)A, |A1)A, |Ag, Ay) |Ar Ag) —
e g LIIy, AL A, (AL Ay) |ADA, |A) AL |AL Ay) |Ay, AD) -
mQ LIy Ay, Ay (A, Ay) |AD)A; |Ag, Ay) — - -
=
= 9) 5.5. Analysis of T,, and the V-relation

Using the normal form of §5.2 for V = V,; we compute
H,(F) = cxs H(F,) — b3 M(F,),

where, as in §4.1, M(¢) denotes 0ppp 0330 — (D5 4)% If ¢ = 0, &3 is a repeated factor, and we
have the cases discussed in Wall (19804). Otherwise, we can write

PHILOSOPHICAL
TRANSACTIONS
OF

G(xy, Xg, X3) = Fio(%y, X9, ¥3) — g3,
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with &y = b?/c, and find H,(F) = cx; H(G). We have already called attention to the signifi-
cance of «, as critical level of ¢: we now see that the singularities of T, are determined in
terms of those of ¢ = &, as follows. If ¢ = a, has a singularity of type A, (A;), the tangent
there is a twofold (threefold) line of T;,. Each singularity of type A, gives a singularity of type
A, of T,,; other singularities are on x; = 0 except that if ¢ = e, is equianharmonic, H(G) is a
triangle. As to singularities on x; = 0, these are given by tables 5.1.1 and 5.1.2: we have A? if
¢ has species Ia, v, §, Ila, y or I1Ia; AgA, if ¢ has species IB, & or IIB, A; if ¢ has species Ie or
I18, D, if ¢ has species I or ITIB while 1, is a repeated line for species I6. Singularities on x; = 0
(a pencil with common vertex) are all adjugate base points.

In particular, there is another line in T, if H,(G) is reducible, i.e. ¢ = a, has type A} (only
occurs in species Iy,, 185, IIy,) Ad (IL,) or A, (Ie,, II8; — but this case was excluded) or is
equianharmonic.

We now describe the V-relation. Each A,-singularity of ¢ = o, gives one of G = 0 which is
V-related to the corresponding A,-singularity of F. On @,, we have a singular point of type Ag
for species IB, 8, IIB which is V-related to both A,-singularities of f, and for Ie and II$ an
Aj-singularity, V-related to both As-points. Finally for In and IIIB the point P of &, has type
D, on T,; X is a repeated plane (so these cases also occur under (v)); and P is V-related to all
four A,-singularities of f. As we shall find in other examples, it is not so easy to locate the
points of contact of S, and T, corresponding to coincidences of critical values.

Now consider V' = X,. Here we find

_ H(F) = x H($) — (x3+1) N(¢),
with N(¢) = 0,,¢ 05,6 — (0,,0)2. Taking ¢ in standard form for type I yields
H(F) = safiarabrs-+oxg) (s +)} —mymd = 5,Go,

where G,, represents a nodal cubic if a # 0, a triangle if 2 = 0. As above, the intersections of
G, with x; = 0 are the points of H,(®) with their due multiplicities; in this case, these are V-
related to all the critical points of f (of multiplicity greater than 1), the rules being as above.

6.. THE E -POINT CASE
6.1. Classification

The case when § contains an E-point P arose in §3.4 and occurred again as case (iii) in
§4.1: in this chapter we give a full discussion. It was shown in §1.2, and proposition 1.4.2 that
for P a nonsingular point of §, equivalent characterizations are (z) the tangent plane to § at
P meets S in three lines through P; (5) the polar quadric 2y is reducible; (¢) P is singular on
the Hessian surface T (or on the parabolic curve). '

We saw in §2.4 that we may choose coordinates (with 7, as x5 = 0) so that

F = 3x%x; + (%0, %z, %),

and in the same section we discussed the nature of the critical points in x, = 0, classifying P
into one of five types. The remaining critical points of F lie in x, = 0 and coincide with the
critical points of ¢. Moreover, those not on x, = 0 have the same type as the corresponding
critical point of ¢ for we can then take x,x} as local coordinate, and so obtain the singularity
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in standard form. The condition that F, is nonsingular is here equivalent to having &, non-
singular, i.e. with three distinct asymptotes, so of type I in the notation of Wall (1979) and
§5.1.

We can picture the situation in terms of the plane C2? on which ¢ is defined, thus giving a
pattern of level curves (see, for example the figures in Wall (19805)) with the line I(x, = 0)
drawn in the plane: / must not be parallel to an asymptote of ¢ = 0. Then ¢, = ¢|/is a
cubic (not of lower degree), and so has either (2) two critical points A; (at different levels)
or (b) one critical point of type A,. These correspond to the types of E.-point as defined in
§2.4. :

We also refined this classification in §2.4 by writing a, or b, when there are r critical points
of f V-related to P, or equivalently  critical points of ¢ lying on I. The other critical points of
¢, correspond to points of tangency (in case by, an inflexional tangent) of [ with level curves
of @. Such points may also lie at critical levels of ¢. We should thus refine the previous classi-
fication by adding a prime to denote the cases ag, aj, by when / touches a critical level curve,
or two primes ag when it touches two.

For given ¢, a general line [ is thus of type a,. Types ag, a,, b, each define one-parameter
families of lines; and ag, aj, a,, by, b, each occur for a finite number (if any) of lines /. For the
one-parameter families we note that the condition that / passes through a specified critical
point, or touches a curve at a specified critical level, defines an irreducible family of lines /
(in the latter case, since / cannot be a component of a level curve). It is not clear whether type
b, defines an irreducible family.

Since when [ is tangent (inflexional tangent) to some level curve, we have singularities A2
(A3) at that level in x, = 0, and when [ passes through (is nodal tangent at) an A, singularity
of ¢, that point is a critical point of type A; (A;) for £, it is now easy (§6.2) to list all cases,
provided we determine the finite numbers of above possibilities for /. It is also not difficult
(§6.4) to determine what happens when / passes through a singularity of ¢ of higher type.

6.2. Enumeration

We now enumerate the cases arising. First exclude the cases when f has a critical point of
corank 2: then ¢ does not have type I6, and / cannot pass through singularities of ¢ of type
A, or A;. We describe when the various types of line / can occur, according to the type of ¢.

A general line / has type a,. If I' is a singular level curve of ¢ and is irreducible, a general
tangent has type ag; If I' consists of a conic and a line, a general tangent to the conic has type
ag. Recall that / does not meet I' at infinity, so cannot be an asymptote or a component. An
inflexional tangent [ to a general level curve is of type by; to a critical level I' is of type by.
If I' is a nodal cubic, there are three inflexional tangents: there is thus (at least) one line of
type by, unless all three points of inflexion are at infinity, i.e. ¢ has type { (or 0). If I'is a
cuspidal cubic, there is just one inflexional tangent; however this is an asymptote if ¢ has type
8. If I is reducible, it has no inflexional tangents.

Next let R be a critical point of ¢, of type A,, lying on the level curve I', and consider lines
I through R. If /s tangent to I" at R but not a component of I', then it has type b,. If it passes
through another critical point of type A; (at a different level), it has type a,. If I touches
another critical level curve I", it has type aj; otherwise type a,. There are only finitely many
lines of type a;; let us count how many. If I is nodal, it has class 4 so we expect four tangents
from R; however, if I is reducible, and the line m is a component, then m is an asymptote to
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I'" and an inflexional tangent at infinity, so accounts for two of the tangents, leaving twoj; if
I'is a triangle, there are none left. If I is cuspidal it has class 3, so we expect three tangents
(which may be reduced to 1); if I'"” consists of a conic and a line, the conic has class 2 so there
are two tangents (there are no cases with I" and I" both reducible).

We have left to last the discussion of the most difficult case, ag. Again we start with two
singular level curves, I" and I, neither of which is a triangle, and now seek to count the
number of common tangents — mainly to decide when this number is zero. If I" and I"" are
both nodal, hence of class 4, we may expect 16 common tangents (counted with multiplicities).
However, each asymptote is a common tangent, and I" and I" have three-point contact there.
Thus it counts as three common tangents. There are now seven remaining. If the asymptote
is an inflexional tangent (which occurs only when ¢ has type ), it has even higher multiplicity,
but there still remain common tangents. If I" is nodal and I"” cuspidal, we now expect
4x3—-3-3—-3 = 3 common tangents (here ¢ has type B, so there are no osculating asymp-
totes) ; if I" and I are both cuspidal we have 3 x3—3 x3 = 0 common tangents (type 7).
Otherwise suppose I" consists of a conic (and a line): if I"is nodal, we expect 4 x2—-3—-3 = 2
common tangents; this is correct for type y but for type € the residual line of I"" touches the
conic and is an inflexional tangent to I, and thus accounts for both common tangents, leaving
zero. Finally if I" is cuspidal (type 8) we have 3 x2—3 -3 = 0 common tangents. To sum-
marize: although any two critical levels have common tangents for ¢ of type a, B or y, the two
critical levels in the remaining cases 8, €, {, n have no common tangents.

We give our conclusions in table 6.2.1. In the left-hand column we describe the critical
levels: these will be denoted by I'p, I'g, I'y (in order), and critical points on (for example)

I'q will be denoted by Q, Q’, ... . A tick means that the case occurs.
TABLE 6.2.1
type of V ... a, a, ag a, aj a, b, by b
type of ¢ species
A /A A A, o Y ooV v VR
AZ/AI/AI B ‘/ FP FPaFQ Q. Q}FP Q,R ‘/ FP Q
B’ - FQ FQ: FR - Q,a Fn - - FQ -
AZ/A /A, Y v Iy Iy, T, P P, I, P,Q v r, P
Y - FQ FQ)FR Q Q, I Q,R — — Q
A, /A 3 I — Q QI — o= Q
Aq/Ay € v Iy - Q Q,I - v r, Q
Al/A ¢ v I, — P — PQ /S — Q
A,/A, n v Iy — — — — v Iy —

Also  v'a[(Q,T%), 8'ay(l0), €a(ly), a1 (Q).

In each case we have listed the critical points (if any) through which / passes, and the critical
levels (if any) that it touches. Where there are several possibilities giving results of the same
type, we have only listed one of them. The symbol describing the critical points at different
critical values can be immediately derived: for V of type a,, add A} at the two levels indicated,
for type a;, add an A} and convert the indicated A, to an Ag; for type a, convert both to type
A;. For V of type b,, add an A$ at the level indicated; for type b,, convert the A, to an A;.
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6.3. Analysis of T,, and the V-relation

We now study the Hessian, the quartic curve T, and the V-relation. Normalizing the

equation as in §6.1 we have

H = x,H($) — 21 M(9),
with M (@) = 040 P 0339 — (0939)% We notice again that both F' and H admit the symmetry
Xy <> — Xy,

The quartic T;, being of the form x2 f;(x,, x3) +/3(%s, %3) = 0, we can determine its singu-
larities. These satisfy 0 = 0H,,/0x, = 2x, f,(%,, X3) : those on x; = 0 are at repeated roots of f,,
and those on f, = 0 must also satisfy f; = 0. In fact only when f, and f; have a common factor
A with A2/ f;,, A2{ f, is there a singular point other than X, not on »; = 0: we then have
two singularities each of type A, at the intersections (other than X;) of A with the residual
cubic. The point X, itself has type A, if f, has distinct roots, A; if f; = A2 but A { f,, and A;
if f, = A2, A | f; (but A%/ f,). The singular points on x; = 0 are at the repeated roots of f;:
for a root of multiplicity > 2 that is not a root of f, we have a point of type A,_,; one which
does lie on f, = 0is of type A, if r = 2 and a triple point of type D, (D;) ifr = 3 (r = 4).

We can also describe T, in each of the 25 cases that arise: for example if the highest common
factor of f,(f,) is a line A, the residual cubic I" is nodal (cuspidal) iff f;/A has a repeated
factor (is a perfect cube). Further if f, = A% then A is an inflexional tangent of I" whereas if f,
has distinct factors then A is a chord if A2 { f;, a tangent if A2 | f;, A3 { f;, and A passes through
a singular point of I"if A3 | f,.

For T,, we have further information in that one factor of f; is picked out as x,. The above
classification is entirely in terms of repeated factors of f, f; = %, M, (@) H,(¢). We now inter-
pret these in terms of the above picture:

x| Mo (@) iff X, is an Eq-point of type (4) (by above); x, | H,(¢) iff the polar conic of X,
(at infinity on x, = [) is singular; M, (@) is a perfect square iff / passes through a critical point
of ¢ (by above); H,(¢) has a repeated factor if ¢ has species Ip, I8 or In and a threefold
factor for species Ie (or 16) (by Wall 1979).

Finally, a common factor G of M, (¢) and H,(¢) gives (by lemma 4.1) a line of points whose
polar quadrics have a common vertex R. This line passes through X, so corresponds to a
point Q at infinity in the plane of ¢. The point R lies on the vertex ¥, = x, = 0 of the polar
of X, ; thus the line /(x, = 0) passes through the vertex R of the polar conic of Q with respect
to ¢. This condition is not in general relevant to properties of f. However, if G is a repeated
factor of H,(¢), so Q is singular (type A, or A,), then R is a critical point of ¢ (type A, or A;)
V-related to Q. Since R €/, it gives a critical point of f of corank > 2. The only exception to
this is when ¢ has type In.

We can now give a complete analysis of V-relatedness (which incidentally determines the
types of quartic that can occur as T.,,). We saw already in §2.4 the various cases for the critical
points (those on x; = x, = 0) V-related to X, itself.

Next, for each A (if any), dividing M, (¢) and x,H,(¢) each to the first power only, we
have two singular points of T, of type A, on A. We find that if A|H,(¢) these are adjugate
base points and not F-related to anything. If, however, A = x, they are not adjugate base
points; as x,| M, (4), X, is an E-point of type b, and as 2} { M.(¢), X, is of type b, and
is E-related to the critical points of T, on x, (which are not adjugate base points).
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we find that if ¢ = 0 we can take P at X;. If also d = 0, P lies on S, so is an E-point. We
must check that S, is nonsingular: it has invariants I = 12b¢, J = —4(b3+¢%), so is singular
iff 83 = ¢3. The cases arising are thus in species Ia, with ¢ = d = 0, which we identified as
one component of the Ia” stratum, and in In with d = 0, giving the stratum In’.

On the other hand we can also enumerate these cases as in §6.2 starting from the E-point.
Here we assume that / passes through a critical point of ¢ of type A, or A;. Then fhas a critical
point of type D, (Dj, EG) if [ passes through a point of type A, (A, D,) or Eg if / is tangent at
a cusp, for the corank is increased by 1 and the multiplicity by 2 (if the intersection number
of [ with the critical level is 2) or 4 (otherwise). The types arising are given in table 6.4.1.
For ¢ of type 0, V is of type a, (Dsa") or b, (D,n’) or else { passes through the critical point,
when f has only one singular point (type EG). The only case causing a problem of identification
is D,/A2/A3; it suffices to note that for an E-point of the first type above, the restriction of f'to
the plane it defines has a term 1§ whereas for (ii), this restriction ¢ is of type 0. It is rather
surprising that for ¢ of type B there are two different kinds of lines of type a; (tangents from
the A,-point to a critical level of type A,).

TaBLE 6.4.1
type of V ... a, aj a, b,
species of ¢
B D,y D.y’, D& D Eqa
3 D,y” Dy’ D¢’ Ego’
3 Dyy D,y D;3 —
n D,é D,& D,6 EqB

6.5. Ouverlap between enumerations of §5 and §6

We now study the overlap between the classifications of §5 and of §6: namely, the case
when T, contains both an E,-point P and a line A corresponding to a singular pencil with
common vertex. We first consider the relatively commonly occurring case P € A. We have
seen in earlier subsections of §6 (especially §6.3) that this occurs if and only if A is a common
factor of M, (¢) and H,(¢): the line / must go through the pole of a singular conic of the
polar pencil of ¢, corresponding to a simple (except for type n) factor of H,(¢).

In general the polar pencil has three singular conics. The base points of the pencil are the
four critical points, forming a complete quadrangle; the vertices of the three line-pairs are
the diagonal points of the quadrangle. We observe that in specializations of this, a line through
one of the three vertices and a critical point will still pass through two critical points (or one
of multiplicity at least 2 — an excluded case for /, since then f will have a critical point of
corank 2). Thus / cannot have type a,, a; or b,.

One also finds in most specializations that some vertices coincide with critical points of
multiplicity greater than or equal to 2, so / may not pass through them. When asymptotes of
¢ do not concur (2 # 0 in the notation of I) we have three vertices available for ¢ of species
a, y or {, one available for species B, 8 but none for species ¢ (which will thus not occur in the
lists below). When the asymptotes do concur, two of the vertices are at infinity; there remains
one for species a, y while for species €, there is a line of vertices, so we always have a line A
in 7.

In the context of §5 we took the line A as x; = 0: this corresponds to the line at infinity in
the plane of ¢. We saw that the intersections of A with the residue of T,, were always given by


http://rsta.royalsocietypublishing.org/

S0
' B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

AFFINE CUBIC FUNCTIONS. IV | 443

H,(¢) = 0; the points on S, are given by @, = 0. Thus E.-points are given by common
zeros of these two: we have one such point for ¢ of species 1y, 8, €, Iy, 8, IIla, B and three
such points for ¢ of species I, 6. We shall now show in each of these cases how to determine
the type of the corresponding E-point. After §6.4 we may exclude all cases when there is a
critical point of corank greater than or equal to 2. '

To avoid confusion, we shall write ¥ here for the function denoted ¢ in §5, and retain ¢
for the same use as earlier in this section. We begin by determining the type of ¢. Note that
the polar quadric Zp of the E,-point P splits as mp7y, where 7p is the tangent plane at P; ¢
is the restriction of f to 74 The critical points of ¢ are also critical points of f; they are deter-
mined by the rules given in §5.2.

Now 4 meets the plane 77() on which ¥ is defined in a line m of symmetry. Indeed, in the

various cases arising
(I) ¢ =ub+v3+64uw+3B(u+v)+D,

(II) ¢ = u?v+ 303+ 6pv +a,
(III) ¢ = u3+3v2—3p%u+a,

the E.-point is at infinity at (1, —1, 0), (1, 0, 0) or (0, 1, 0) respectively so 7(¢) n #(¥) is
given by u = v, u = 0, or v = 0 respectively. We see that for I, m passes through two of the
four critical points of y; for II it passes through one and we may count another at infinity;
and for III m again passes through both critical points. Thus the critical points (and values)
of ¥|m occur among those of ¥. These determine the critical points (and values) of ¢ by
the same rules as in §5.2 — except that we have one dimension lower. Again, we may regard
the cases (ii), (iv) of §5.2 as effectively special cases of (i), so need not consider them further.

For ¢ of type I or III, if y|m has distinct critical points, then the critical values and hence
the species of ¢ are determined as follows:

A /A /A /A, (species a) in general,
A,/A3}/A, (species ¥) if coalescence occurs,
A, /A /A, (species B) if o is a critical value,
whereas if the critical points of yr|m coincide, we have
A,/A, (species ) in general,
D, (species 0, excluded) if a, is a critical value.
For ¢ of type II, we have to count oo as a critical value of m. The cases arising for ¢ are
A2/A,/A, (species ¥) in general,
A3/A, (species §) if coalescence occurs,
A3/A, (species §) if e, is a critical value.

.

We note the predicted non-occurrence of species &.

Next we determine the type of the E_-point P. The tangent plane at P meets the y-plane
in a line (u+v = 24, v = 0, infinity) on which ¥ has a constant value (843+64B+ D, a, o).
Note that this is the common value of ¢ at its two remaining critical points. Now the behaviour
of ¢ |/ is determined by this value of ¥ by the same rule as in §5.3 (here the dimension is one
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lower still). Thus for ¢ of type I or II we find that P has type b iff this value equals «,; for
type IIT we see by direct verification that P always has type b.

Now the enumeration in §5.4 allowed us to deduce in each case the symbol giving the
number and type of the critical levels of f. From this we can decide in each case whether P
(if of type a) has type a, or a, and (by counting critical levels) to which symbol a,, ag, ag, a,,
by, bg to assign it, and hence finally place it in the table §6.2. The cases are given in table 6.5.1.
We see that almost all the cases with P of type a,, a, or b, and ¢ of type a, B, v, 8, {, n do
in fact occur (the others, namely Bag, Bag, y'ag, dag, 8b,, could presumably be excluded by
direct arguments).

TABLE 6.5.1

LI n Mmoo o N LCOR (O R & & &
E oay o0a, Ya, Ya, oag aby Yby Ba, Pa, na, ma; nb
LI € 9; € G C; Cz, Cs

E da,  ya, Ba, oaag vag PBby Bag

LII noon v’i, noomoon T2 % Y T 3 8
E Ya, Y'a, va, ta, va; (ag thy by 8a, &3 Ya; Ga,
LIII o} ol a ol oy oy B B

E aby, vby, ab;  vbg Bby B’b; mnb, Mby

The E-classification here should be regarded as definitive; the fact that 7" becomes reducible
does not always change the pattern of critical points, so it may become reducible in ‘different
ways’ for different points in the same stratum. Hence the fact that Eaag and six other strata
appear twice in the list is not contradictory.

We should also consider the cases Ry8e(0. But as there is no critical point of corank 2, we
only have Ry and R¢, which already appeared as LIIIf and f’, and as Enb,y and by.

There is also the case when 7 contains P and A with P ¢ A. I claim in this case however that
T,, must also contain a line through P. For if #} f, +f, is reducible we either have a factor not
involving #x, (proving our assertion) or both factors are linear in x,:

(1fe+/d) = (anl+q) (l'+¢").

Equating coefficients gives lg' = —I’q. If [|¢q, we again have a line through P. If not, we can
take /' = [; then ¢’ = —¢ and we have two conics. Further analysis shows that if 7T, does
contain such a line A, we have f; = f;/2 for some linear form [ so that 7, decomposes into
four lines.

We conclude by describing the case when there is more than one E.-point at infinity.
Suppose § is a nonsingular level surface of f. Then the line A joining two E-points either lies
on S or meets S again in a third E_-point. As S, contains no line, we see that A contains three
E,-points. These are singular on 7': as the intersection multiplicity of A with 7" exceeds 4, A
lies on 7. Hence A < T, defines a singular pencil with common vertex.

Following the approach of §5.2 we choose a plane 7 through A but not through the vertex
and consider the restriction ¢ of f to . Then @,, defines the three E,-points, whose polar
quadrics, being plane-pairs, meet 7 in line-pairs. Thus all lie on H(®) = 0. It follows that ¢
is of type I¢ or 16. Conversely, for ¢ of type I{ or I8 in §5.2 we obtain a function f with three
E-points.


http://rsta.royalsocietypublishing.org/

y A \
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

AFFINE CUBIC FUNCTIONS. IV 445

We gave enumerations in §5.4. We obtain
(D) Dy/AI/As, (D) Dy/AL, (Dy6) Dy/Dy,
(RE) AY/A, (RO) B,
(LIG) AY/AY/AJA,,  (LIG) Al/AL/A,,  (LIG) A}/A /A,
(LIG)  A,/A}/AL

Recall that we gave two main cases: if the common vertex V of the Xy with Q € A is finite
we take V = X and our normal form (for type ) is

S = a3+ a3+ 6Ax; xpx5 + axd + 3642 + 3cxy + d;

if V is infinite we take V = X;; the term 6Ax,x,x, is replaced by 6Ax,x,. In either case the
symmetries X, = WXy, ¥y > 0%, (0® = 1) and x, <> x, of f permute the E_-points which are
thus of the same type. We can see (for example, by considering the E-relation) that there
cannot be any more E_-points.

The cases with no critical point of corank 2 arise in the classification of §6.2 as follows:

AY/AYA /A AY/AY/A, AYAYA, AY/AJA, AY/A,
Eaag Eyag EB'ag EBb, Enb,

7. FUNCTIONS WITH TWO CRITICAL VALUES
7.1. Counting methods

Suppose F:C3 - C is an affine function with just two critical values. As the total multiplicity
of critical points is 8, at least one of the critical values must have multiplicity m > 4 i.e. m
~ is the sum of multiplicities of the singular points of F-1(0). By the classification (Bruce & Wall
1979) (and excluding corank 2 critical points as enumerated in §5.4) we have one of the

following:
A4’ A3A1) A%a A2A%, A%’ A5) A4A1’ A3A%’ A§A1) A5A13 A%

By §1.4 if the surface has A2 singularities or worse (i.e. A;, A2A;, A;A,, A}), there is an E-
point. The singularities A, A;A;, A A,, A;A? are handled explicitly below. This leaves A, A2, A$.

The Af singularity is excluded as follows. If the singular points are Py, P,, P,, P,, then each
of the six lines P,P; meets 7., at a point (not an E-point) where the intersection number of S,
with H, is 2. This already accounts for all 12 intersections. Thus there can be no other pairs
of points at the same critical level. If there are only two critical levels, the other must be of
type A,. But then the pinch line meets 7, at a further point of intersection of S, and H,: a
contradiction.

We may try the same argument in the other cases. A critical level of type X corresponds
to an intersection multiplicity m(X) of §,, with H,, where m(X) = a(X) +6(X) and a(X) =
2{(i+j) for each pair A;, A; at the level indicated} equals the multiplicity of X multiplied by
. one less than the number of critical points; #(X) = X{max 2({—2, 0):A, € X}. The cases
arising are given in table 7.1.1. If we exclude the cases when there is an E,-point, each of
these cases is associated with just one critical level, and the sum of the m(X) corresponding
to all critical levels of F cannot exceed 12,
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If there is an E_-point of type a, then the intersection number is only 2 whereas table 7.1.1
(for A3/A2, A2/A, or A;/A,;) would lead us to expect 4; E-points of type b do not cause
exceptions. The cases when there is more than one E,-point were enumerated in §6.5: only
one case A}/A, has just two critical levels. So even in the presence of an E.-point of type a,
we have Im(X) < 14.

TaBLE 7.1.1
X AL A, AT A AA AT A A AAT AT AN, AA?
a(X) 0 0 2 -0 3 6 0 4 8 12 5 10
b(X) 0 .0 0 2 0 ] 0 4 2 0 0 4 2
m(X) 0 0 2 2 3 6 4 6 8 12 9 12

The possibilities for just two critical levels (and no E.-points) are thus as follows:
AyAr/Agy AgAL AR AL AyfAg AdfAAL Ag/AAY, AsA /AGA,.

We shall see that in fact each of these cases occurs, essentially uniquely.

It is also easy to enumerate the cases T m(X) < 14, but as this allows several cases that do
not in fact occur, we content ourselves with referring back to §6.

In §§7.2-7.4 we go over these lists more carefully. As in Wall (19804) each case determines f
essentially uniquely, and hence the elliptic cubic S,, and we shall calculate the j-invariants of
these curves.

7.2. The E,-point case

It is easy to extract from §6.2 a list of those cases where there are just two critical values:
Edaj Ebb, Eea; Eeb, Eeb, Eta, Etb, Enbg
AAY/AsAL AsAL/Ar AsAY/A; As/AJA; As/A; AAY/Ag Aj/A; AR/A.

One may observe that the lists of §5 only give one case with just two critical values: the final
case above. :

Note that the methods of §7.1 give an alternative proof that cases dag, eag, {ag, nag do not
occur. For these would yield functions of types AzA;/AS, A,A2/AL, A3/AS, A, A3/A, A3, with
m(X) equalling 18, 20, 26, 16, each an impossibility.

We can give equations for these cases by using the normal form of Wall (1980a) or §5.1
for ¢ and then determining the line /.

It suffices to indicate how the calculations can be performed. In species 8 we use an alter-
native normal form (cf. Wall 19804) in which the critical points are all real; thus we take

g = u®—3uv®+ 3(u?+v?) + 3u,
with P(—1,0) oftype A, g(P) =-1

and Q,e(la 26) of type Ala g(Qe) =1,

ThelineL,:v—2 = A(z—1) through Q) , admits — 1 as a critical value of g|L, iff 0 = (A—1)3x
(9A—5). Here A = 1 gives the line PQ ;, so A = & gives a line of type a;. The Hessian form at
Q,1s 6u—12uv: here u = 1 is the line Q,Q ,,s0 u—1 = 2 (v—2) is of type b,.

In species €, we may take ¢ = 1 in the normal form of table 5.1.1. The Hessian form at QQ
(determining the nodal tangents, type b,) is 9u2—6uv + 9v%; if L, is the line v +3 = A(z+3)
through Q then the critical points of g on L, are Q and u = — (343 —6A2+ 42 —3) /(A3 +1); the

e = +1.
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condition that the corresponding critical value equals — 10 reduces to 0 = (A—1)4(11A2—
10A+11). Again A = 1 corresponds to PQ: the other two factors give lines of type a;.
The inflexional tangents of I'q can be found as follows. Substitute # = x—3, v = y—3 to
reduce the equation to
¥ +y% = 9x%— 6xy + 9y?,

with parametrization (92— 6¢+9, 9t3— 62+ 9¢, 3+ 1). The line (X, Y, Z) is an inflexional
tangent if, for some «, £

9Y+Z = 33, 9X—-6Y = 3q,

9X+Z = a8, 9Y—-6X = 3a?,
whence 5X = 3af%+2a%f, 5Y = 2af%+ 3a%f and

5(a®—f%) = 45(X-7Y) = 9(af?—a?p),

giving 5a2+ 14af + 542 = 0. Take & = 1—,/6, # = 1+,/6 and substitute in the equations to
obtain —X = 5+46, —Y = 5—./6, Z = 64. Thus the inflexional tangents of I'y are
(5+4/6)x+ (5—4/6)y = 64; their product is thus parallel to 19x2+ 62xy + 19y2.

In species { we can choose v = u as the line of type a, joining the nodes; the tangents at the
node, type b,, are v = 0 and v = 0.

Finally in case n, u = — 1 is an inflexional tangent (bg).
Once the equation of / is determined we have

F = 3w?l(u, v) + g(u, v).
Hence F, = 3wl (u, v) +ud+v3.
The tangents from W to S, are thus the lines
lo(u, v) (u¥+03) =0

and if /,(u,v) = au+fv, this quartic has invariants [ = 12af, J = 4(a®+f%). Hence
J = —403p%/(a3— p%)2 If we are given lI' = pu®+ quv + pv? then we have I’ = fu+av, p = af,
g = a?+ 2 j = —4p3/(¢®*—3pg®—2p%). For 8, we used a different normalization, and now
need the cross ratio of the four values of «/v: 0, /3, —./3 and (aj) ¥ or (b,) 2.

A short calculation now yields values of j as follows:

Eda;  Edb, Eea; Eeb, Eeb, Efa, Etb; Enbg
j 2(53/9)3 125/4 (11/2)3 —}(19/27)3 27/2 1 0 0
7.3. The A, case
The equation of a surface with an A, singularity can always be taken in the form
0 = wxy +x2z+yz?+dys.

Here there is a singularity at W, of type A,; also if d = 0 one at Y, of type A,; but no more.
The cases d # 0 are all equivalent.

For the affine case, we must choose a ‘plane at infinity’ not through W: we can take it as
w = ax+ by +cz; then the affine equation is obtained by substituting

w=ax+by+cz+1.
Thus F(x, y, z) = dy*+x2z+yz?+xy(ax+by+cz+1).

45 Vol. g02. A


http://rsta.royalsocietypublishing.org/

JA \

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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We now investigate the critical points of F. Now
0F [0z = x*+2yz+cxy
vanishes on a cone parametrized by |
(%, 9, z) = A(20, —1, 26%—c0)
(the line x = y = 0 corresponds to § = co). Substituting these values gives

oOF oF . oF _
Yoy F o = A00) 5 = AFO)=-A

where 8(0) = — 200+ 12¢0°% + (4a—c?) 6% + 260 — 3d,
f(0) = 86> —6c0%— (4a—c2) 0 +b.
Thus the critical points other than W are given by the four roots of &(6) = 0: we can then
calculate A = (f(0))~* and thrice the critical value equals xy = —20A%.
For d = 0 we must have b # 0 (as the plane at infinity cannot go through the singular

point Y): the simple root & = 0 of §(6) = 0 corresponds to Y; the others behave as above.
The following lemma saves much calculation later.

LemMmA 7.3.1. If 0y # 0 is a root of multiplicity r of & = O corresponding to the critical value v,
of F, then 0, is a root of multiplicity at least r of

g(0) = {f(0))*+2005 = 0.

Proof. One easily verifies that

&'(0) = 2/(0) —40f"(0). (*)

Now since v, = — 2622 and A = {f(6)}* we have
{ 0)}2+200_1 = 0,
proving the lemma for » = 1. Now observe that
8(0)—0g'(0) = {/f(0)y*—20f(0)f"(0) = £/ (0)&(0).
We have 0 = 8(0) = g(0) and 6 # 0; thus 6"(0) = 0 implies g'(f) = 0 proving the lemma
for r = 2. Similarly, by differentiating this identity,
—Bg”(ﬁ) = ${/(6)8"(0) +f"(6) &'(6)},
_0gm(0) _gll — %{f 8/[/ 0) +2f (0) 6\”(0) +f” 8} 0)}

so that if ¢”(0) (or ¢"(0) and 6"”(0)) vanish, it follows that g"(6) (or g”(6) and g”(6)) vanish.
Since r < 4, this proves the lemma.

CoRrOLLARY 7.3.2. If all roots of 6(0) = O correspond to the same critical value vy of F, then &(0)
divides g(0). If d = 0, and all nonzero roots of & correspond to the same vy, then 6—18(0) divides g(0).

Note that this corollary is applicable precisely in the cases when F has just two critical values
(the other value F = 0 corresponding to W and, perhaps, Y).
To simplify the calculations, write —e = 4a—¢?% k = 6c. Thus

8(0) = — 2004+ 2k63 — e0? + 260 — 3d,
S(0) = 803 —kO%+e0 +b.
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A long division leads to

T5£(6)% + 8(6) (24067 — 36k6 + 2552 /d)
= (3k2+960¢ — 50052/d) 04 + (16806 — 114k + 5052 /d) 63
+ (7562 — 222bk — 720d — 25b%/d) 0 + (150be + 108dk + 506%/d) 6.

The coeflicients on the left are determined so as to remove the coefficients of 6%, 85 and 1 on
the right. Thus 8(6) divides g(0) iff

3k2+960¢ — 50062 /d = 0, 16806 — 114¢k+5062%/d = 0,
756% — 222bk —7120d — 25b%/d = 0,  150be+ 108dk + 5063/d = 150v~1a.

We regard the fourth of these as an equation for vgl. The others yield, in turn,

b= (180¢k — 3k3) bk _ x(6—x)
- 16800 °’ 2 56 °
d— 500(180¢k — 3k3)2 d 5x(6 —x)2

(16800)2 (3k2+960¢)’ ¢2  26x 3 x T3(x + 32)’
and setting x = £%2/10¢ and simplifying considerably gives

0 = 117x3 + 3468x% —26000x + 28224

(3x—4) (39x—196) (x + 36).

I

]

Each value of x gives a solution, unique up to the multiplicative action

(@, byc,d, e, k) A = (aA2 bA3, cA, dA4, eA?, k).

For x = § we obtain

k=40, ¢=120, b =40, d = %2,
0(0) = —20(0—1)%4, Fof type A,/A,.
For x = 2% we obtain
k=140, ¢ =390, b =95 d=13°%
0(0) = —20(0—-4)%(0—3%2), F of type A,/A A,.

For x = — 36 we obtain
k=60, ¢=—10, b=—45 d = 3375

0(0) = —20(0—3)2(62+30+2%), F of type A,/A, A%
The case d = 0 is treated similarly. We have

20{51 () + 20-18(6) 2 + (k* — 810b6-1) §(0)
= (2k% — 120¢k + 162005) 63+ (18062 — 19806k — ck?) 02 + (2bk? + 1890¢b) 6.

Hence for equal critical values,

0 = 2k3—120¢k + 162006 = 180¢2 — 19805k — k2.

I

Eliminating 4 gives 0 = 22k%— 1410¢k2 + 16200¢2
= (2k%—30¢) (11k%—540¢).

45-2
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Thus we have two further cases:
k=15 ¢=15, b=
thus of type A A;/A,,
k=90, ¢=165 b =20, &0) =-2000-8)(0-1)2
with F of type A A, /A, A,.
Observe that we know from previous work (see, for example, §5.4) that critical points of

corank 2 cannot occur in conjunction with an A,, so once we know the multiplicities, the type
of I is determined. We state the conclusion formally as

[

, 8(0) = —200(6—1)%, with F

THEOREM 7.3.3. Suppose F has an A, singularity and just two critical values. Then with the above
normalization, F is uniquely determined up to the C*-action in each case. There are five cases:

type of F d k(= 6¢c) b e(= c?—4a) J
A/A, zo 40 40 120 -4
AuJAA, 125 140 95 390 50

A JA,A2 287 60 —45 —10 2352/36
A A /A, 0 15 2 15 —-25/2
AA/AA, 0 90 20 165 17352/210

Progf. 1t remains to determine the modulus of the elliptic curve at infinity. This has equation
0 = dy’+x%z+yz2+xy(ax+by +cz).
The point (0, 0, 1) lies on this; the line x = # through it meets the curve where
(a2 +bt+d)y>+ (2 +ct) y?z +y22 = 0,
so is a tangent iff 0 =4+ 203+ (c2—4a) 12— 4bt —4d.
The normalized coefficients of this quartic are
(1, ¢ = 1%k, $(c2—4a) = e, —b, —4d)
yielding, in the five cases above,
(1,12, 20, —40, —80). (1, 35, 65, — 95, —125)
(1, 5, —3, 45, —3375), (1,3, 2, -%0)
and (1, &, 3%, —20, 0).

b

We can simplify by replacing ¢ by a convenient multiple r¢ and multiplying the whole equation
by some constant s. Taking (7, 5) = (2, 5%), (1, 3), (3, t335), (1, %), (1, 2) yields (3, 1,3, —3, — 1),
(%, 7,89, =57, —25), (}, 1, —§, 1, —25), (4,1, 2, —1,0) and (3, 3, 11, —8, 0). Now for each
quintuple (a, b, ¢, d, ¢) we compute in turn I = ae—4bd+3¢% J = ace+ 2bcd —ad?® — eb®— 3,
(I/3)3—J?%and j = I3/(13—27J?). We find

I=26x3  2Ux3  _29/33 21, 33x 17,

J=—28/5, —26x1 2125923/36x5 —2/5 — 33 x 340,
<]/3>3 ___J2 — 216/53’ 232/52’ — 224/36 x 52’ — 213/33 X 52’ 21036/52’

j=—4, 50, 235238, —38 17352 /210,
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7.4. The Az A, case

The arguments in this section are very similar to those in the preceding one. We have the

projective normal form
0 = wxy +x2%+yz%+ dy3,

with an Ay singularity at W, an A, singularity at X and, if d = 0, a further A, singularity at
Y. The point Z is an E-point, with tangent plane x+y = 0. If d = 0, (0, 1, —1, 0) is another
E.-point, with tangent plane w = 0.

We take as ‘plane at infinity’ w = ax+ by +cz: this does not pass through W. For it to
avoid X we need a # 0; if d = 0 we also need b # 0. We may also suppose ¢ # 0 (the case
when Z lies at infinity being adequately covered by §6). We now study

' F = dyp+(x+y) 22 +xy(ax+by+cz+1).
We have 0F/0z = 2z(x+y) +cxy,
which vanishes on the cone parametrized by
(%, 9, 2) = M{(1+0), (1-0), {e(6>—1)}.
Substituting from this gives

OF oF . OF OF .,
Vgt = RU=000), Ftg = O+,

where 8(0) = 3{e2(6%—1) (62+0)} —a(1+6)2+b(1 —02) +3d(1—0)2,
F(0) = 3e2(02—1) (02+3)} +a(1+0) (3—0) +b(1—0) (3+6) +3d(1 — )2

Of the eight critical points of F, four are located at W and X; the others are determined by
0(0) = 0 with A determined as —2/f(f). The corresponding critical value is v = xy =
A%(1—6?). These values are distinct from zero unless ' = 0 acquires an extra singularity which
occurs only when d = 0. This point is (0, —6~%, 0) as @ = —1, A = —}b~L. In the general case,

0 = g,(0) = {f(0)}*— 401 (1-67).
Here, as in §7.3, we need a lemma.

Lemma 7.4.1. If 0, # — 1 is a root of multiplicity r of 8(0) = 0, corresponding to the critical value
vy of F, then Oy is a root of multiplicity at least r of g, (0) = 0.

Proof. We first verify that
0f(0)+(1—62)f'(0) = (0—2)8(0) +(0—6%) 6 (0).
Now g'(0) = 2f(0)f(0) +8v~10, so
20g(0) + (1-0%)g'(0) = 20{f(0)}*+2(1—06*)f(6)f"(0)
= 2f(0){(0—2)8(0) + (0—062) & (0)}.

We have seen that 8(6,) = g(6,) = 0. Provided 1 — 6} does not vanish we see by differentiating
the above identity that if all the derivatives of & up to the rth vanish at 6,, the same holds for
g, as required. Now 6, # —1 by hypothesis, and 6 = 1 is not a root of 4 since a # 0.

45-3
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CorOLLARY 7.4.2. If all roots of & correspond to the same critical value v of F, then 6(0) divides g,(0).
If d = 0 and all roots other than 0 = — 1 correspond to the same v, then (1+0)~18(0) divides g,(0).

To find functions with two critical values we thus need conditions on q, b, ¢, d, for existence
of v such that &(0) divides g,(0) = {f(0)}2>—4v~1(1—62). Since 4, f are homogeneous of degree
1in a, b, ¢® and d, and ¢ # 0, we can take ¢2 = 8. Now

{f(0)—8(0)}*—025(0) +705(0)
= 0415 —"Ta+5b—3d)+ 63(6 + 11a—23b + 27d)
+02(— 24+ 19a+ 7b — 45d + 1642 — 16ab + 452)
+60(—6—23a+23b + 21d + 324% — 8b2)
+(9—24a— 12b + 16a% + 16ab + 452).

We remove the term in 6* by subtracting (15 —7a+ 55 —3d) 8. This gives a cubic 463+ BG2 +

CO+ D, and our conditions are
0=A=C=B+D,

A = 9—18a+ 285 —30d,
C = 9—30a+ 286 + 184 + 324% — 862 + (2a + 6d) (16 — Ta + 56 — 3d),
A+B+D = —9+6a—28b—18d+32a%+ 8b%+ (2a — 6d) (15— Ta + 5b — 3d).
Thus 0=A+B+C+D
= —24a+ 64a%+4a(15—Ta+ 5b — 3d)
= 4a(9+ 9a+ 56 —3d).
Since a # 0, 0 = 9+ 9a+ 55— 3d. Solving this with 4 = 0 gives

a =—(81+226)/108, d = (27+386)/36,
whence substituting gives
0 = 1024b2+ 145265 + 9477 = (5125 +351) (26 + 27).

We thus have two solutions:

(i) b=-31% a=—7%n d=184z ¢ =38, giving §(0) = (0+1)%, and F of type
AgAy /Ay

(il) b= _2§17 a 2,
For d = 0 we write &(0

d =—2%¢% = 8, with 6(0) = (0—2)3(0+7),and Fof type A;A,/AA,.
) ==

(6+1)¢(6) with
6(0) = 0(0°—1) —a(1+0) +b(1 —0),
S(0) = 0e(0) +3¢(0),
with $(0) = (02—1) +a{1+0) +b(1—0),

and now
{$(0))*—e(0) {0+2(a—b)}
= 02(—1+3a+3b+a%—2ab+b?)
+0(a—b+ 4a® — 4b2) + (1 —2a — 2b + 3a® — 2ab + 3b2).
For this to be a multiple of 1 — 6% we need
= a—b+4a%—4b% = a+b+ 4a®— 4ab + 452

Ifa = b, the second equation reducesto 0 = 2a+44a2soa = Oor — }.Ifnot, then 1+ 4a + 46 = 0.
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Subtracting a+ & times this from the second equation leads to ab = 0. As ab = 0 is excluded
when d = 0, we have just the one solution:

(i) a = b =—4%,¢® = 8,d = 0, with ¢(0) = 63, and F of type A;A}/A,.

Of the three cases above, (i) appeared in §7.3; and in (iii), as « = 5, we have an E-point
(the original (0, 1, —1, 0)) at infinity, so this case must be among those in §7.2.

THEOREM 7.4.3. With the above normalizations, there are just three cases (each essentially unique)
where F has only two critical values. These are given by

b ¢

0o
[/

type of F a Jj
AsAr/Ay — o34 -3 8 Tos1 50
AgA,/AgAy 2 ~2 8 -2z —173/27
AgA/A, -1 -3 8 0 (H*

Proof. It remains to compute j. The projective cubic has equation
0 =dy+ (x+y) 22+ xy(ax + by +c¢z),
so the line x = #y through the point Z on the cubic is a tangent iff

(a+bt+d)y?*+ctyz+ (t+1)22 = 0
has a repeated root, i.e. iff
4(at2+bt+d)(t+1) —c%? = 0.

This quartic has normalized coefficients (0, a, §(4a+ 4b —¢?), b +d, 4d) which are, in the above
cases, (0, —15%s — 1858 —Toen zse)s (0,2, —9, —27, —54) and (0, -}, —2, —}, 0). Again
we replace ¢ by ¢ and multiply by s, where
(r,s) = (&, —132%), (8, —5%) and (1, —2) thus obtaining
(0, 5,30,15, —4) with I =25x3x52, J=—52xT7x27, j=50
(0, —2,3,3,2) with [ = 51, J =="11, Jj=-113/27
(0,1,4,1,0) with [ = 44, J = —56, Jj= (&3
COROLLARY 7.4.4. The final case above is of type Egay.
This is distinguished from the other A;A%/A; case (namely Efa,) by the j-invariant.

7.5. Summary and conclusions

Collecting together the above lists, we have the 24 cases given in table 7.5.1. for functions
with two critical values.

TABLE 7.5.1

label D, Dge’ DL’ D,n’ D,6 D;p’
critical levels D,/A,A? D,/A; A, D,/Al D,/AZ, D,/D, D,/A A,

-8 2 125 0* 0% -1
label Dy’ D;$ Eqo’ EqB ~ Eda; Edb,
critical levels D,/A? D,/A, © Eg/A? Eo/A, AAYAA,  AA /A,
j l2_2_7£* 1% 1% 0* 2_533/36 _1_2_5*
label Eca; Eseb, Ecb, Eta, Etb, Enb;
critical levels AgALJA, AZA /A, As/A, A AZ/A, A /A2 A%/A,
Jj (&t)3* —198/2.3° 27 1% 0% o*
critical levels A /A, A JAGA, ’ A, /AAS AA /A, AAJAA, AGA JAGA,

—4 50 290 —25 52173 /210 17327

The cases in table 7.5.1 marked with an asterisk give elliptic curves with complex multipli-
cation, The only thing the values all have in common is being rational !

'
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454 C. T. C. WALL

The comments of Wall (19804) about strata in the unfolding space of an Ee singularity
apply equally here, but we now have a complete list. Note that the two strata of type A; A3/A,
are distinguished by the value of j.

After the listing of cases in which F has only two critical levels, we can now determine all
the possibilities for F. We shall only attempt this in the sense of determining the types of critical
point and whether they occur at the same critical level, though a similar but more complicated
argument should suffice to determine the possible strata (connected components of the space
of functions F with critical points of a given type).

In the unfoldings of simple singularities, the possible types of function were determined by
Lyashko (1976):

A=Ay Ay Ay AJJAL Az Ay Ay/A,, AY/Ay AJAA,.

The lists for A, and A; are longer: indeed, any combination of critical points of type A; at
various levels (at least two) with total multiplicity 4 (5) occurs in the unfolding of A, (A;)
except AF/A; (A, A2/A, Al/A,, A3/A,).

Next we recall that if F; occurs in the versal unfolding, U of a function F,, then U is also
a versal unfolding of Fj, and so contains functions of all types occurring in the standard versal
unfolding of F,. Of course, apart from F, itself each will have more critical levels than F,.
Now the result we shall establish is as follows.

THEOREM 7.5.2. Each function occurring in the versal unfolding U of a singularity of type Bg occurs
also in the unfolding of some F,, where F, occurs in U and has two critical levels.

The types of functions F, are as in table 7.5.1. The author has not succeeded in obtaining
an interpretation of this list by graphs.

Proof. We divide this into three cases.

(a) F has a critical point of corank 2. Here a complete list of types of function F was given
in Wall (19804, p. 2) and the result is evident by inspection.

(b) F has no critical level of multiplicity greater than 3. Thus the critical levels allowed are
Ay Ay A}, Ay, AzA;, AT claim that every combination of these with total multiplicity 8
occurs as an unfolding of one of the above. This is a matter of routine verification — there are 51
cases, 26 come from A,/A,, eleven more from A, /A A, leaving A3/A3/A, /A, A}/A2Z/A, /A, /A,
and twelve cases where there are three critical levels, of multiplicities 3, 3 and 2 (including
A}/A}/A3, giving both the above). Of these twelve; ten come from Ay/A; or A,/A3,
A A /A A /A, from AgA, /A, and Ag/A A, /A% from A A /A, A,.

(¢c) If there is a critical level of multiplicity 5, it has type A;, A;A;, A;A} or AZA, and we
choose F; to have its other critical level A; or A,A,;. Each of A,/A,, A2/A,, A,/A,/A, occurs
in the unfolding of this, and hence F occurs in the unfolding of F;.

Otherwise there is one critical level (L) of multiplicity 4, with others of lower multiplicity
(W):

L can be any of A, A;A;, A}, Az A}, At and W any of Ay/A;, A, A /A, A}/A,, A,/A,, A,/A2
AY/AYL Ao/Ar/Ay AY/ALAg, AJAAY /A,

If W does not have type A}/A, then Ay > W, so if L is A,, A;A; or A,A% L/A,>L/W.
Moreover, AzA; - A}/A, so L/A;A; - L/A3/A,.
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If L is A2, we have an E,-point. Also if L is A}, the critical level L already corresponds to
intersection multiplicity 12 of S, with T, so if there is more, we have an E-point. This occurs
for each W except A,/A,, Ay/A; /Ay, Ay/A /A /A,, which appear in the unfolding of Aj/D,.

We think of the E,-point cases, as before, in terms of a cubic function ¢ on C? and a line /
in C2. When L has type A, / is an inflexional tangent to a noncritical level of ¢. Since the
space of inflexional tangents to level curves is connected (and does not become disconnected
by removing tangents at infinity, or at nodes) we can deform [ through such lines to be an
inflexional tangent to a critical level curve (of type A, or A, — ¢ clearly cannot be of species 16).
This corresponds to an F with a critical level of multiplicity greater than or equal to 5, which
has already been discussed.

When L has type A}, [ is a tangent to a critical level of ¢ of type Aj. (Thus ¢ has species Iy
or I8.) We can deform / through tangents to the conic till it passes through another critical
point of ¢ (no need to meet ¢, on the way). We then have F, of type A}/A}/A, or A}/D,
and unfolding to F.
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